diff --git a/.gitignore b/.gitignore index 83e67f7..db52daa 100644 --- a/.gitignore +++ b/.gitignore @@ -169,4 +169,5 @@ src/scraping/data/* src/evals/parenting_chatbot/* src/genai/parenting_chatbot/prodigy_eval/_scrap/* !src/genai/parenting_chatbot/prodigy_eval/data/ -!src/genai/sandbox/signals/data/ \ No newline at end of file +!src/genai/sandbox/signals/data/ +src/genai/sandbox/signals/data/signals_2024.json diff --git a/signals_app.py b/signals_app.py index 8af66d2..46c0ae1 100644 --- a/signals_app.py +++ b/signals_app.py @@ -1,12 +1,17 @@ -import streamlit as st - -from genai import MessageTemplate, FunctionTemplate -from genai.eyfs import TextGenerator -from genai.streamlit_pages.utils import reset_state import json import os + import openai +import streamlit as st + from dotenv import load_dotenv + +from genai import FunctionTemplate +from genai import MessageTemplate +from genai.eyfs import TextGenerator +from genai.message_history import InMemoryMessageHistory + + load_dotenv() selected_model = "gpt-4-1106-preview" @@ -14,7 +19,7 @@ # Paths to prompts PROMPT_PATH = "src/genai/sandbox/signals/data/" -PATH_SIGNALS_DATA = PROMPT_PATH + "signals_2023.json" +PATH_SIGNALS_DATA = PROMPT_PATH + "signals_2024.json" PATH_SYSTEM = PROMPT_PATH + "00_system.jsonl" PATH_INTRO = PROMPT_PATH + "01_intro.jsonl" PATH_ACTIONS = PROMPT_PATH + "intent_actions.json" @@ -22,19 +27,20 @@ # Top signal function path_func_top_signal = PROMPT_PATH + "func_top_signal.json" path_prompt_top_signal = PROMPT_PATH + "prompt_top_signal.jsonl" -# Top three signals function +# Top three signals function path_func_top_three_signals = PROMPT_PATH + "func_top_three_signals.json" path_prompt_top_three_signals = PROMPT_PATH + "prompt_top_three_signals.jsonl" -# Intent detection function +# Intent detection function path_func_intent = PROMPT_PATH + "func_intent.json" path_prompt_intent = PROMPT_PATH + "prompt_intent.jsonl" -# Prompt: Impact on the user +# Prompt: Impact on the user path_prompt_impact = PROMPT_PATH + "02_signal_impact.jsonl" -# Prompt: Summary of different signals +# Prompt: Summary of different signals path_prompt_choice = PROMPT_PATH + "03_signal_choice.jsonl" -# Prompt: Following up on user's question +# Prompt: Following up on user's question path_prompt_following_up = PROMPT_PATH + "04_follow_up.jsonl" + def auth_openai() -> None: """Authenticate with OpenAI.""" try: @@ -47,9 +53,19 @@ def read_jsonl(path: str) -> list: """Read a JSONL file.""" with open(path, "r") as f: return [json.loads(line) for line in f.readlines()] - -def generate_signals_texts(signals_data: dict, chosen_signals: list = None): + +def generate_signals_texts(signals_data: dict, chosen_signals: list = None) -> str: + """ + Generate a description of the signals. + + Args: + signals_data (dict): A dictionary of signals data. + chosen_signals (list, optional): A list of signals to include in the description. Defaults to None. + + Returns: + str: A description of the signals. + """ signals = [signal["short_name"] for signal in signals_data] signals_titles = [signal["title"] for signal in signals_data] signals_summaries = [signal["summary"] for signal in signals_data] @@ -63,35 +79,51 @@ def generate_signals_texts(signals_data: dict, chosen_signals: list = None): if short_name in chosen_signals: signals_description += f"Signal '{short_name}': {title}\n{summary}\n\n" - return signals_description + return signals_description + +def generate_action_texts(action_data: dict, active_signal: str = None) -> str: + """ + Generate a description of the actions. -def generate_action_texts(action_data: dict): + Args: + action_data (dict): A dictionary of actions data. + active_signal (str, optional): The active signal. Defaults to None. + + Returns: + str: A description of the actions. + + """ actions = [a["name"] for a in action_data] action_descriptions = [a["description"] for a in action_data] action_text = "" for name, description in zip(actions, action_descriptions): - action_text += f"Action '{name}': {description}\n\n" - return action_text + if (name != "following_up") or (active_signal is None): + action_text += f"Action '{name}': {description}\n\n" + else: + action_text += f"Action '{name}': User is following up with another question about the {active_signal} signal that's being discussed just now.\n\n" # noqa: B950 + + return action_text + # Prepare the data signals_data = json.load(open(PATH_SIGNALS_DATA, "r")) -signals_dict = {s['short_name']: s for s in signals_data} -signals_descriptions = generate_signals_texts(signals_data) -signals = [s['short_name'] for s in signals_data] +signals_dict = {s["short_name"]: s for s in signals_data} +signals_descriptions = generate_signals_texts(signals_data) +signals = [s["short_name"] for s in signals_data] actions_data = json.load(open(PATH_ACTIONS, "r")) actions_descriptions = generate_action_texts(actions_data) -actions = [a['name'] for a in actions_data] +actions = [a["name"] for a in actions_data] -def predict_intent(user_message: str, messages: list) -> str: +def predict_intent(user_message: str, active_signal: str) -> str: """Detect the intent of the user's message. - + Args: user_message (str): The user's message. messages (list): The history of messages. - + Returns: str: The intent of the user's message. Possible outputs are: - "explain": The user wants to know more about a signal. @@ -106,127 +138,129 @@ def predict_intent(user_message: str, messages: list) -> str: all_messages = message_history + [message] function = FunctionTemplate.load(func_intent) response = TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=all_messages, - message_kwargs={"intents": actions_descriptions, "user_input": user_message}, - stream=False, - functions=[function.to_prompt()], - function_call={"name": "predict_intent"}, - ) - intent = json.loads(response['choices'][0]['message']['function_call']['arguments']) - return intent['prediction'] + model=selected_model, + temperature=temperature, + messages=all_messages, + message_kwargs={ + "intents": generate_action_texts(actions_data, active_signal=active_signal), + "user_input": user_message, + }, + stream=False, + functions=[function.to_prompt()], + function_call={"name": "predict_intent"}, + ) + intent = json.loads(response["choices"][0]["message"]["function_call"]["arguments"]) + return intent["prediction"] def predict_top_signal(user_message: str, signals: list) -> str: """Predict the top signal from the user's message. - + Args: user_message (str): The user's message. - + Returns: str: The top signal from the user's message. """ - # Function call + # Function call func_top_signal = json.loads(open(path_func_top_signal).read()) - func_top_signal['parameters']['properties']['prediction']['enum'] = signals - + func_top_signal["parameters"]["properties"]["prediction"]["enum"] = signals + message = MessageTemplate.load(path_prompt_top_signal) function = FunctionTemplate.load(func_top_signal) response = TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=[message], - message_kwargs={"signals": signals_descriptions, "user_input": user_message}, - stream=False, - functions=[function.to_prompt()], - function_call={"name": "predict_top_signal"}, - ) - top_signal = json.loads(response['choices'][0]['message']['function_call']['arguments']) - return top_signal['prediction'] + model=selected_model, + temperature=temperature, + messages=[message], + message_kwargs={"signals": signals_descriptions, "user_input": user_message}, + stream=False, + functions=[function.to_prompt()], + function_call={"name": "predict_top_signal"}, + ) + top_signal = json.loads(response["choices"][0]["message"]["function_call"]["arguments"]) + return top_signal["prediction"] def predict_top_three_signals(user_message: str, allowed_signals: list) -> list: """Predict the top signal from the user's message. - + Args: user_message (str): The user's message. - + Returns: str: The top signal from the user's message. """ - # Function call + # Function call func_top_signals = json.loads(open(path_func_top_three_signals).read()) - func_top_signals['parameters']['properties']['prediction']['items']['enum'] = allowed_signals - print(func_top_signals) + func_top_signals["parameters"]["properties"]["prediction"]["items"]["enum"] = allowed_signals message = MessageTemplate.load(path_prompt_top_three_signals) function_top_three = FunctionTemplate.load(func_top_signals) signals_descriptions_ = generate_signals_texts(signals_data, allowed_signals) response = TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=[message], - message_kwargs={"signals": signals_descriptions_, "user_input": user_message}, - stream=False, - functions=[function_top_three.to_prompt()], - function_call={"name": "predict_top_signals"}, - ) - top_signals = json.loads(response['choices'][0]['message']['function_call']['arguments']) - print(message) - print(f"Prediction: {top_signals}") - print(response) - return top_signals['prediction'] + model=selected_model, + temperature=temperature, + messages=[message], + message_kwargs={"signals": signals_descriptions_, "user_input": user_message}, + stream=False, + functions=[function_top_three.to_prompt()], + function_call={"name": "predict_top_signals"}, + ) + top_signals = json.loads(response["choices"][0]["message"]["function_call"]["arguments"]) + return top_signals["prediction"] + def signals_bot(sidebar: bool = True) -> None: """Explain me a concept like I'm 3.""" - # Define your custom CSS - # custom_css = """ - # - # """ - - # # Apply the custom CSS - # st.markdown(custom_css, unsafe_allow_html=True) - - st.title("Chatting about the future signals with an AI") - st.write("This is an interactive experience to explore Nesta's future signals using this years trending technology: generative AI. The AI chatbot will try to relate and personalise the future signals to you. You can provide as much information about yourself as you like (don't share anything too sensitive) and the AI will try to come up with ways that these signals could impact your life. Good luck! (and remember, it might make mistakes)") - - # First time running the app + # Define custom CSS + custom_css = """ + + """ + + # Apply the custom CSS + st.markdown(custom_css, unsafe_allow_html=True) + + st.title("Personalised Futures: A Chatbot's Take on Nesta's Signals") + st.markdown( + "Undoubtedly, the rise of generative artificial intelligence (AI) has been one of the main trends of 2023, with 'ChatGPT' chosen as [the word of the year](https://www.economist.com/culture/2023/12/07/our-word-of-the-year-for-2023) by *The Economist*. Reflecting on this trend, we have built an experimental generative AI chatbot of our own to help you engage more deeply with Nesta’s Signals.\n\nThis is an experiment in creating a more interactive reading experience using 2023’s big new technology. Our chatbot Scout will try to relate this year’s Signals to you and your life. You can provide a little information about yourself and Scout will try to come up with ways that these Signals might be relevant to your life.\n\nAs such, it is also a signal of the potential new ways we might interact with information in the future, with customised bots helping us explore and synthesise reams of written text, data, charts and videos to find what matters the most to us.\n\n*The chatbot uses OpenAI's GPT-4, a cutting-edge AI model. Conversations aren't saved, and OpenAI claims not to use the data. **Nonetheless, please do not share any information that could identify you or that is sensitive or confidential.** Please remember, this is an experimental chatbot; it can make mistakes and ‘hallucinate’ - [another word of the year](https://www.cam.ac.uk/research/news/cambridge-dictionary-names-hallucinate-word-of-the-year-2023) - or show biases despite our efforts to instruct it to be inclusive and sensitive. After trying out the chatbot, we invite you to leave us feedback using [this form](https://forms.gle/UWcnpgKg9WG7JmPt5).*", # noqa: B950 + unsafe_allow_html=True, # noqa: B950 + ) # noqa: B950 + + # First time running the app if "messages" not in st.session_state: - # Record of messages to display on the app + # Record of messages to display on the app st.session_state.messages = [] - # Record of messages to send to the LLM - st.session_state.history = [] - # Keep track of which state we're in - st.session_state.state = "start" + # Record of messages to send to the LLM + st.session_state["memory"] = InMemoryMessageHistory() + # Keep track of which state we're in + st.session_state.state = "start" # Fetch system and introduction messages st.session_state.signals = [] - + # Add system message to the history system_message = read_jsonl(PATH_SYSTEM)[0] system_message = MessageTemplate.load(system_message) system_message.format_message(**{"signals": signals_descriptions}) - st.session_state.history.append(system_message.to_prompt()) - print(system_message.to_prompt()) + st.session_state["memory"].add_message(system_message.to_prompt()) # Add the intro messages intro_messages = read_jsonl(PATH_INTRO) - print(intro_messages) for m in intro_messages: st.session_state.messages.append(m) - st.session_state.history.append(m) + st.session_state["memory"].add_message(m) # Display chat messages on app rerun for message in st.session_state.messages: @@ -240,139 +274,75 @@ def signals_bot(sidebar: bool = True) -> None: with st.chat_message("user"): st.markdown(user_message) st.session_state.messages.append({"role": "user", "content": user_message}) - st.session_state.history.append({"role": "user", "content": user_message}) - + st.session_state["memory"].add_message({"role": "user", "content": user_message}) if st.session_state.state == "start": intent = "new_signal" st.session_state.user_info = user_message st.session_state.state = "chatting" else: - intent = predict_intent(user_message, st.session_state.history) - print(intent) - # intent = "following_up" + intent = predict_intent(user_message, active_signal=st.session_state.active_signal) if intent == "new_signal": - # Predict the signal to explain allowed_signals = [s for s in signals if s not in st.session_state.signals] signal_to_explain = predict_top_signal(user_message, allowed_signals) st.session_state.signals.append(signal_to_explain) st.session_state.active_signal = signal_to_explain - print(signal_to_explain) - print(f"I have these signals in memory: {st.session_state.signals}") - # Explain the signal instruction = MessageTemplate.load(path_prompt_impact) - message_history = [MessageTemplate.load(m) for m in st.session_state.history] - message_history += [instruction] + message_history = st.session_state["memory"].get_messages(max_tokens=3000) + [instruction] with st.chat_message("assistant"): - message_placeholder = st.empty() - full_response = "" - for response in TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=message_history, - message_kwargs={ - "signal": signals_dict[signal_to_explain]['full_text'], - "user_input": st.session_state.user_info - }, - stream=True, - ): - full_response += response.choices[0].delta.get("content", "") - message_placeholder.markdown(full_response + "▌") - message_placeholder.markdown(full_response) - st.session_state.messages.append({"role": "assistant", "content": full_response}) - st.session_state.history.append({"role": "assistant", "content": full_response}) + full_response = llm_call( + selected_model, + temperature, + messages=message_history, + messages_placeholders={ + "signal": signals_dict[signal_to_explain]["full_text"], + "user_input": st.session_state.user_info, + }, + ) + st.session_state.messages.append({"role": "assistant", "content": full_response}) + st.session_state["memory"].add_message({"role": "assistant", "content": full_response}) elif intent == "more_signals": - # Select the top 5 most relevant signals for the user - # (remove the seen signals) - # Provide an overview of the impacts of signal on the reader - # Ask which one the bot should elaborate on allowed_signals = [s for s in signals if s not in st.session_state.signals] top_signals = predict_top_three_signals(st.session_state.user_info, allowed_signals) - print(allowed_signals) - print(top_signals) - print(top_signals[0:3]) - # Explain the signal - instruction = MessageTemplate.load(path_prompt_choice) top_signals_text = generate_signals_texts(signals_data, top_signals) - message_history = [MessageTemplate.load(m) for m in st.session_state.history] - message_history += [instruction] + instruction = MessageTemplate.load(path_prompt_choice) + message_history = st.session_state["memory"].get_messages(max_tokens=3000) + [instruction] with st.chat_message("assistant"): - message_placeholder = st.empty() - full_response = "" - for response in TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=message_history, - message_kwargs={ - "signals": top_signals_text, - "user_input": st.session_state.user_info - }, - stream=True, - ): - full_response += response.choices[0].delta.get("content", "") - message_placeholder.markdown(full_response + "▌") - message_placeholder.markdown(full_response) - st.session_state.messages.append({"role": "assistant", "content": full_response}) - st.session_state.history.append({"role": "assistant", "content": full_response}) + full_response = llm_call( + selected_model, + temperature, + messages=message_history, + messages_placeholders={"signals": top_signals_text, "user_input": st.session_state.user_info}, + ) + st.session_state.messages.append({"role": "assistant", "content": full_response}) + st.session_state["memory"].add_message({"role": "assistant", "content": full_response}) elif intent == "following_up": - print(st.session_state.active_signal) - #Follow up the user's message instruction = MessageTemplate.load(path_prompt_following_up) - message_history = [MessageTemplate.load(m) for m in st.session_state.history] - message_history += [instruction] + message_history = st.session_state["memory"].get_messages(max_tokens=3000) + [instruction] with st.chat_message("assistant"): - message_placeholder = st.empty() - full_response = "" - for response in TextGenerator.generate( - model=selected_model, - temperature=temperature, - messages=message_history, - message_kwargs={ - "signal": signals_dict[st.session_state.active_signal]['full_text'], - "user_input": user_message - }, - stream=True, - ): - full_response += response.choices[0].delta.get("content", "") - message_placeholder.markdown(full_response + "▌") - message_placeholder.markdown(full_response) - - st.session_state.messages.append({"role": "assistant", "content": full_response}) - st.session_state.history.append({"role": "assistant", "content": full_response}) - - # # Add user message to history - # prompt = prompt2() - # st.session_state.messages.append({"role": "user", "content": prompt.to_prompt()}) - # print(user_message) - # # Generate AI response - # with st.chat_message("assistant"): - # message_placeholder = st.empty() - # full_response = "" - # for response in TextGenerator.generate( - # model=selected_model, - # temperature=temperature, - # messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], - # message_kwargs= None, - # stream=True, - # ): - # full_response += response.choices[0].delta.get("content", "") - # message_placeholder.markdown(full_response + "▌") - # message_placeholder.markdown(full_response) - # # Add AI response to history - # st.session_state.messages.append({"role": "assistant", "content": full_response}) - - -def llm_call( - selected_model: str, temperature: float, message: MessageTemplate, messages_placeholders: dict) -> str: + full_response = llm_call( + selected_model, + temperature, + messages=message_history, + messages_placeholders={ + "signal": signals_dict[st.session_state.active_signal]["full_text"], + "user_input": user_message, + }, + ) + st.session_state.messages.append({"role": "assistant", "content": full_response}) + st.session_state["memory"].add_message({"role": "assistant", "content": full_response}) + + +def llm_call(selected_model: str, temperature: float, messages: MessageTemplate, messages_placeholders: dict) -> str: """Call the LLM""" message_placeholder = st.empty() full_response = "" for response in TextGenerator.generate( model=selected_model, temperature=temperature, - messages=[message], + messages=messages, message_kwargs=messages_placeholders, stream=True, ): @@ -384,13 +354,6 @@ def llm_call( return full_response -def prompt2(): - """ - Generate a prompt for an overview of the impact of signals on the user - """ - prompt = MessageTemplate.load(data_path + "prompt2.json") - return prompt - def main() -> None: """Run the app.""" auth_openai() diff --git a/src/genai/sandbox/signals/data/00_system.jsonl b/src/genai/sandbox/signals/data/00_system.jsonl index 5161683..de1bf15 100644 --- a/src/genai/sandbox/signals/data/00_system.jsonl +++ b/src/genai/sandbox/signals/data/00_system.jsonl @@ -1 +1 @@ -{"role": "user", "content": "###Instructions###\nYou are a helpful, kind, intelligent and polite futurist. You work for the United Kingdom's innovation agency Nesta, and your task is to engage the user about the future signals and trends that Nesta has researched, by helping the user imagine and appreciate how the signals will impact their life. You will personalise the user experience by taking the information provided by the user and tailoring your explanation to the user background. You are also expert in equity, diversity and inclusion and your answers will be inclusive, the answers will never be based on negative stereotypes, you will never offend and you will exercise sensitivity about topics such as ethnicity and gender. Here are the future signals that you can talk about: {signals}. Do not discuss other future signals as this is not part of this year's Nesta's Signals edition."} +{"role": "system", "content": "###Instructions###\nYou are a helpful, kind, intelligent and polite futurist. You work for the United Kingdom's innovation agency Nesta, and your task is to engage the user about the future signals and trends that Nesta has researched, by helping the user imagine and appreciate how the signals will impact their life. You will personalise the user experience by taking the information provided by the user and tailoring your explanation to the user background. You are also expert in equity, diversity and inclusion and your answers will be inclusive, the answers will never be based on negative stereotypes, you will never offend and you will exercise sensitivity about topics such as ethnicity and gender. Here are the future signals that you can talk about: {signals}. Do not discuss other future signals as this is not part of this year's Nesta's Signals edition."} diff --git a/src/genai/sandbox/signals/data/01_intro.jsonl b/src/genai/sandbox/signals/data/01_intro.jsonl index 37ddfc6..bd40418 100644 --- a/src/genai/sandbox/signals/data/01_intro.jsonl +++ b/src/genai/sandbox/signals/data/01_intro.jsonl @@ -1,3 +1,3 @@ {"role": "assistant", "content": "Hi, I’m Scout, Discovery Hub’s experimental AI assistant which helps people explore and interpret signals about the future. ✨"} -{"role": "assistant", "content": "This year we have collected signals about a variety of topics, from 🤖 robochefs and ⚡ abundant energy to 👶 pronatalism and 🌱 having green neighbours."} +{"role": "assistant", "content": "This year we have collected signals about a variety of topics, from 🏥 virtual hospital wards and 🧠 neuroprivacy to ⚡ space solar power and 🧪 data poisoning."} {"role": "assistant", "content": "Tell me one or two things about you and your interests, so that I can suggest which future signals might be the most relevant to you!"} diff --git a/src/genai/sandbox/signals/data/02_signal_impact.jsonl b/src/genai/sandbox/signals/data/02_signal_impact.jsonl index f293084..fbdddeb 100644 --- a/src/genai/sandbox/signals/data/02_signal_impact.jsonl +++ b/src/genai/sandbox/signals/data/02_signal_impact.jsonl @@ -1,2 +1,2 @@ -{"role": "user", "content": "Start your answer by explaining in one clear sentence how the selected future signal might be relevant to the user, given the user information and conversation history. Then describe three ways how the selected future signal might impact them. Keep these descriptions short, two-three sentences at most. Finish your answer by encouraging the user to ask questions about this signal (note that you will try your best to answer them) or suggest to ask about the other future signals. Remember that you must be patient and never offend or be aggressive. \n\n###Future signal###{signal}\n\n###User information### Here is what the user told you about themselves: {user_input}.\n\n###Answer###" -} \ No newline at end of file +{"role": "user", "content": "Start your answer by summarising the signal in one clear, concise sentence and then follow by explaining in another clear sentence how the selected future signal might be relevant to the user, given the user information and conversation history. Then describe three ways how the selected future signal might impact them. Keep these descriptions short, two-three sentences at most. Finish your answer by encouraging the user to ask questions about this signal (note that you will try your best to answer them) or suggest to ask about the other future signals. Remember that you must be patient and never offend or be aggressive. \n\n###Future signal###{signal}\n\n###User information### Here is what the user told you about themselves: {user_input}.\n\n###Answer###" +} diff --git a/src/genai/sandbox/signals/data/intent_actions.json b/src/genai/sandbox/signals/data/intent_actions.json index 4f7e34e..9f6fc8b 100644 --- a/src/genai/sandbox/signals/data/intent_actions.json +++ b/src/genai/sandbox/signals/data/intent_actions.json @@ -1,7 +1,7 @@ [ { "name": "new_signal", - "description": "User wishes to change the topic and talk about an new future signal. Alternatively, the user has been just presented with a set of future signal options by the assistant, and the user has now chosen which signal to talk about more." + "description": "User wishes to change the topic and talk about an different future signal. Alternatively, the user has been just presented with a set of future signal options by the assistant, and the user has now chosen which signal to talk about more." }, { "name": "more_signals", @@ -11,4 +11,4 @@ "name": "following_up", "description": "User is following up with another question about the signal that's being discussed just now." } -] \ No newline at end of file +] diff --git a/src/genai/sandbox/signals/signals_test.ipynb b/src/genai/sandbox/signals/signals_test.ipynb index 6c64180..404fac6 100644 --- a/src/genai/sandbox/signals/signals_test.ipynb +++ b/src/genai/sandbox/signals/signals_test.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 233, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -27,9 +27,18 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/karlis.kanders/Documents/code/discovery_generative_ai/.venv/lib/python3.9/site-packages/pinecone/index.py:4: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from tqdm.autonotebook import tqdm\n" + ] + } + ], "source": [ "from genai.eyfs import (\n", " TextGenerator,\n", @@ -39,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -75,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -88,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -258,17 +267,17 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ - "path_func_top_signals = \"data/func_top_signals.json\"\n", - "path_prompt_top_signals = \"data/prompt_top_signals.jsonl\"" + "path_func_top_signals = \"data/func_top_three_signals.json\"\n", + "path_prompt_top_signals = \"data/prompt_top_three_signals.jsonl\"" ] }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -278,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -288,7 +297,7 @@ " 'content': '###Instructions### Predict which three of the following future signals are the most relevant to user input. You have to choose three of these signals. \\n\\n###Future signal summaries###\\n{signals}\\n\\n###User input:\\n{user_input}'}]" ] }, - "execution_count": 105, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -300,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -310,16 +319,16 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ - "user_input = \"I like burgers\"" + "user_input = \"I am a parent\"" ] }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -336,20 +345,18 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'prediction': ['robochefs',\n", - " 'abundant_energy',\n", - " 'baby_boom',\n", - " 'hidden_figures',\n", - " 'green_neighbours']}" + "{'prediction': ['Pronatalism vs pro-family',\n", + " 'Hidden Figures',\n", + " 'Green neighbours']}" ] }, - "execution_count": 118, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -359,6 +366,26 @@ "answer" ] }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Pronatalism vs pro-family', 'Hidden Figures', 'Green neighbours']" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "answer['prediction'][0:3]" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -577,7 +604,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [