-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathget_spam_lds.py
254 lines (189 loc) · 9.11 KB
/
get_spam_lds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
from scipy.optimize import minimize
import batman
def init_batman(t, ld_law, nresampling=None, etresampling=None):
"""
This function initializes the batman lightcurve generator object.
Parameters
----------
t: array
Array containing the times at which the lightcurve will be evaluated. Assumes units of days.
ld_law: string
Limb-darkening law used to compute the model. Available ld laws: uniform, linear, quadratic,
logarithmic, exponential, squareroot, nonlinear, power2.
nresampling: int
Number of resampled points in case resampling is wanted.
etresampling: float
Exposure time of the resampling, same units as input time.
Returns
-------
params: batman object
Object containing the parameters of the lightcurve model.
m: batman object
Object that enables the lightcurve calculation.
"""
params = batman.TransitParams()
params.t0 = 0.
params.per = 1.
params.rp = 0.1
params.a = 15.
params.inc = 87.
params.ecc = 0.
params.w = 90.
if ld_law == 'linear':
params.u = [0.5]
elif ld_law == 'nonlinear':
params.u = [0.1, 0.1, 0.1, 0.1]
else:
params.u = [0.1,0.3]
params.limb_dark = ld_law
if nresampling is None or etresampling is None:
m = batman.TransitModel(params, t)
else:
m = batman.TransitModel(params, t, supersample_factor=nresampling, exp_time=etresampling)
return params, m
def spam_objective_function(theta, params, m, params_twop, m_twop):
"""
Objective function that the SPAM algorithm is looking to minimize.
"""
u1, u2 = theta
params_twop.u = [u1, u2]
return np.sum((m.light_curve(params) - m_twop.light_curve(params_twop))**2)
def transform_coefficients(c1, c2, c3, c4, planet_name=None, planet_data=None, ld_law='quadratic', ndatapoints=1000, method='BFGS', u1_guess=0.5, u2_guess=0.5):
"""
Given a set of non-linear limb-darkening coefficients (c1, c2, c3 and c4) and either a planet name ('planet_name') or a dictionary with
the planet's data ('planet_data'), this function returns the Synthetic-Photometry/Atmosphere-Model (SPAM; https://arxiv.org/abs/1106.4659)
limb-darkening coefficients of the star.
Reference:
Howarth, I., 2011, "On stellar limb darkening and exoplanetary transits", MNRAS, 418, 1165
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.1165H/abstract
Parameters
----------
c1: float
First limb-darkening coefficient of the non-linear law.
c2: float
Same as c1, but second.
c3: float
Same as c1, but third.
c4: float
Same as c1, but fourth.
planet_name: string
String with the name of the input planet (e.g., 'WASP-19b'); this will be used to query the planet properties from MAST.
planet_data: dict
Dictionary containing the planet properties. In particular, this dictionary should contain the keys
'transit_duration', 'orbital_period' (days), 'Rp/Rs', 'a/Rs', 'inclination' (degrees), 'eccentricity' and 'omega' (degrees)
for the algorithm to work. Properties in this dictionary take prescedence over the ones retrieved from MAST.
ld_law: string
Limb-darkening law for which SPAM coefficients are wanted. Default is 'quadratic', but can also be 'squareroot' or 'logarithmic'.
ndatapoints: int
Number of datapoints that will be used for the lightcurve simulations to extract back the SPAM coefficients.
method: string
Minimization method to match lightcurves. Default is 'BFGS', but can be any of the ones available for scipy.optimize.minimize.
Details: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
u1_guess: float
Guess starting value for u1. Default is 0.5
u2_guess: flat
Guess starting value for u2. Default is 0.5.
Returns
-------
u1: float
The first limb-darkening coefficient of the selected two-parameter law.
u2: flat
Same as u1, but for the second coefficient.
"""
planet_properties = ['transit_duration', 'orbital_period', 'Rp/Rs', 'a/Rs', 'inclination', 'eccentricity', 'omega']
# Check if planet name is given
if planet_name is not None:
# If planet_name is given, retrieve MAST properties
mast_planet_data, url = utils.get_target_data(planet_name)
# Merge the dictionaries, prioritizing the manual input
mast_planet_data.update(planet_data or {})
planet_data = mast_planet_data
if planet_data is None:
raise Exception("User must input either 'planet_name' and/or 'planet_data' for SPAM to work. See details by doing exoctk.limb_darkening.spam.transform_coefficients?.")
# Check that all properties exist in the input dictionary
missing = [planet_property for planet_property in planet_properties if planet_data.get(planet_property) is None]
if len(missing) > 0:
# Print current data for user
print('{} properties'.format(planet_name or 'Planet'))
for planet_property in planet_properties:
print('{}: {}'.format(planet_property, planet_data.get(planet_property)))
raise ValueError("{} missing planet propert{} needed for SPAM to work. Please include this in the 'planet_data' input dictionary".format(len(missing), 'y is' if len(missing) == 1 else 'ies are'))
# User inputs check done. Now jump into the algorithm. First, define times around transit
times = np.linspace(-planet_data['transit_duration']/2., planet_data['transit_duration']/2., ndatapoints)
# Now initialize models
params, m = init_batman(times, 'nonlinear')
params_twop, m_twop = init_batman(times, ld_law)
# Define params according to the planet_data dictionary
for par in [params, params_twop]:
par.per = planet_data['orbital_period']
par.rp = planet_data['Rp/Rs']
par.a = planet_data['a/Rs']
par.inc = planet_data['inclination']
par.ecc = planet_data['eccentricity']
par.w = planet_data['omega']
# Set non-linear law coefficients
params.u = [c1, c2, c3, c4]
# Allright, now given these models, optimize u1 and u2 such that they match as good as possible the lightcurves of
# the non-linear law. We use scipy.optimize for this
results = minimize(spam_objective_function, [u1_guess, u2_guess], args=(params, m, params_twop, m_twop), method=method.lower())
return results.x, {prop: val for prop, val in planet_data.items() if prop in planet_properties}
def get_wav_and_coeffs(input_file, ld_law = 'quadratic', model = 'A100'):
if ld_law == 'quadratic':
check = 'u1,'
elif ld_law == 'squareroot':
check = 's1,'
wavs, c1, c2, c3, c4, u1, u2 = [], [], [], [], [], [], []
fin = open(input_file, 'r')
while True:
s = fin.readline()
if s != '':
spitout = s.split()
if len(spitout) > 0:
if len(spitout) > 1:
if spitout[1] == model:
wavs.append( np.double( spitout[0] ) )
if spitout[0] == check:
u1.append( np.double(spitout[-2][:-1]) )
u2.append( np.double(spitout[-1]) )
if spitout[0] == 'c1,':
c1.append( np.double(spitout[-4][:-1]) )
c2.append( np.double(spitout[-3][:-1]) )
c3.append( np.double(spitout[-2][:-1]) )
c4.append( np.double(spitout[-1]) )
else:
break
return wavs, c1, c2, c3, c4, u1, u2
orders = ['w39_order1', 'w39_order2']
planet_data = {}
planet_data['transit_duration'] = 2.8032 / 24.
planet_data['orbital_period'] = 4.055259
planet_data['Rp/Rs'] = 0.14379920399444782
planet_data['a/Rs'] = 11.328210411169186
planet_data['inclination'] = 87.6798251
planet_data['eccentricity'] = 0.0
planet_data['omega'] = 90.0
ld_law = 'squareroot'
ndatapoints = 537
model = 'A100'
for order in orders:
fout = open(order+'_'+ld_law+'_spam.txt', 'w')
input_file = 'results/'+order+'.txt'
wavs, c1, c2, c3, c4, u1, u2 = get_wav_and_coeffs(input_file, ld_law = ld_law, model = model)
u1_spam, u2_spam = [], []
fout.write('# SPAM LD coefficients\n')
fout.write('# Calculation by Nestor Espinoza ([email protected])\n')
fout.write('# \n')
fout.write('# Column 1: Wavelength (microns) \n')
fout.write('# Column 2-5: Non-linear LD coeffs\n')
fout.write('# Column 6-7: '+ld_law+' LD coeffs\n')
fout.write('# Column 8-9: SPAM '+ld_law+' LD coeffs\n')
fout.write('# \n')
for i in range(len(wavs)):
out, _ = transform_coefficients(c1[i], c2[i], c3[i], c4[i],
planet_data = planet_data,
ld_law=ld_law,
ndatapoints=ndatapoints,
u1_guess=u1[i], u2_guess=u2[i])
u1s, u2s = out
fout.write('{0:.5f} {1:.10f} {2:.10f} {3:.10f} {4:.10f} {5:.10f} {6:.10f} {7:.10f} {8:.10f}\n'.format(wavs[i] / 10000., c1[i], c2[i], c3[i], c4[i], u1[i], u2[i], u1s, u2s))