-
Notifications
You must be signed in to change notification settings - Fork 3
/
lda-alpha.c
68 lines (55 loc) · 1.9 KB
/
lda-alpha.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// (C) Copyright 2004, David M. Blei (blei [at] cs [dot] cmu [dot] edu)
// This file is part of LDA-C.
// LDA-C is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// LDA-C is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
#include "lda-alpha.h"
/*
* objective function and its derivatives
*
*/
double alhood(double a, double ss, int D, int K)
{ return(D * (lgamma(K * a) - K * lgamma(a)) + (a - 1) * ss); }
double d_alhood(double a, double ss, int D, int K)
{ return(D * (K * digamma(K * a) - K * digamma(a)) + ss); }
double d2_alhood(double a, int D, int K)
{ return(D * (K * K * trigamma(K * a) - K * trigamma(a))); }
/*
* newtons method
*
*/
double opt_alpha(double ss, int D, int K)
{
double a, log_a, init_a = 100;
double f, df, d2f;
int iter = 0;
log_a = log(init_a);
do
{
iter++;
a = exp(log_a);
if (isnan(a))
{
init_a = init_a * 10;
printf("warning : alpha is nan; new init = %5.5f\n", init_a);
a = init_a;
log_a = log(a);
}
f = alhood(a, ss, D, K);
df = d_alhood(a, ss, D, K);
d2f = d2_alhood(a, D, K);
log_a = log_a - df/(d2f * a + df);
printf("alpha maximization : %5.5f %5.5f\n", f, df);
}
while ((fabs(df) > NEWTON_THRESH) && (iter < MAX_ALPHA_ITER));
return(exp(log_a));
}