From ed8a2626167ce63208df80ab507f384ccec23d10 Mon Sep 17 00:00:00 2001 From: Your Name Date: Fri, 6 Oct 2023 22:52:30 +0530 Subject: [PATCH 1/2] Added the code which give relevant information or characteristics of the dataset with the help of statistical analysis and visualization techniques of the features of the dataset. --- Validation/dataset_info.py | 101 +++++++++++++++++++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 Validation/dataset_info.py diff --git a/Validation/dataset_info.py b/Validation/dataset_info.py new file mode 100644 index 0000000..5d9baee --- /dev/null +++ b/Validation/dataset_info.py @@ -0,0 +1,101 @@ +import os +import pandas as pd +import numpy as np +import json +import matplotlib.pyplot as plt + +# Custom function to convert int64 to int +def convert_int64_to_int(obj): + if isinstance(obj, np.int64): + return int(obj) + raise TypeError + +# Function to perform statistical analysis and create plots on columns +def analyze_and_visualize_columns(df): + column_stats = [] + for column in df.columns: + null_count = df[column].isnull().sum() + blank_count = df[column].map(lambda x: str(x).strip() == '').sum() + data_type = df[column].dtype + mean_value = None + + # Calculate the mean for numeric columns + if data_type in ['int64', 'float64']: + mean_value = df[column].mean() + + plt.figure(figsize=(8, 6)) + df[column].plot(kind='hist', bins=20, title=f'Histogram for {column}') + plt.xlabel(column) + plt.ylabel('Frequency') + plt.savefig(f'{column}_histogram.png') + plt.close() + + column_stats.append({ + 'Column Name': column, + 'Number of Null Values': null_count, + 'Number of Blank Values': blank_count, + 'Data Type': str(data_type), + 'Mean': mean_value + }) + + return column_stats + +# Function to generate dataset report in JSON format +def generate_json_report(dataset_path, column_stats): + report_data = { + 'Dataset Path': dataset_path, + 'Column Stats': column_stats + } + + with open('report.json', 'w') as json_file: + json.dump(report_data, json_file, indent=4, default=convert_int64_to_int) # Use custom conversion + +# Function to generate dataset report in CSV format +def generate_csv_report(column_stats): + df = pd.DataFrame(column_stats) + df.to_csv('report.csv', index=False) + +# Function to generate dataset report in TXT format +def generate_txt_report(column_stats): + with open('report.txt', 'w') as txt_file: + txt_file.write("************ VALIDATION REPORT OF UPLOADED DATASET ************\n\n") + # Write column-wise analysis and statistics to the TXT report + for stats in column_stats: + txt_file.write(f"Column Name: {stats['Column Name']}\n") + txt_file.write(f"Number of Null Values: {stats['Number of Null Values']}\n") + txt_file.write(f"Number of Blank Values: {stats['Number of Blank Values']}\n") + txt_file.write(f"Data Type: {stats['Data Type']}\n") + + # Add the mean to the report + if 'Mean' in stats: + txt_file.write(f"Mean: {stats['Mean']}\n") + + txt_file.write("---\n\n") + +# Main function +def main(): + dataset_path = input("Enter the directory path of the dataset: ") + if not os.path.exists(dataset_path): + print("The specified directory does not exist.") + return + + # Read the dataset into a DataFrame (modify the read_csv options as needed) + df = pd.read_csv(os.path.join(dataset_path, 'homeprices_banglore.csv')) + + # Perform statistical analysis and create plots on columns + column_stats = analyze_and_visualize_columns(df) + + # Generate reports in different formats + generate_json_report(dataset_path, column_stats) + generate_csv_report(column_stats) + generate_txt_report(column_stats) + + print("Report generated successfully.") + + + + # Calculate basic statistics for numeric columns + # numeric_stats = df.describe() // on analyzing these statistical values you can judge whether this dataset would be useful for you or not in a particular project!! + +if __name__ == "__main__": + main() From c88cfa5b7b9d86fd27cc0692f1d279ad15fd5934 Mon Sep 17 00:00:00 2001 From: Your Name Date: Fri, 6 Oct 2023 23:14:26 +0530 Subject: [PATCH 2/2] Added the code which give relevant information or characteristics of the dataset through statistical analysis and visualization techniques of the features of the dataset. --- Validation/dataset_info.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Validation/dataset_info.py b/Validation/dataset_info.py index 5d9baee..f851c25 100644 --- a/Validation/dataset_info.py +++ b/Validation/dataset_info.py @@ -80,7 +80,7 @@ def main(): return # Read the dataset into a DataFrame (modify the read_csv options as needed) - df = pd.read_csv(os.path.join(dataset_path, 'homeprices_banglore.csv')) + df = pd.read_csv(os.path.join(dataset_path, 'your_dataset.csv')) # Perform statistical analysis and create plots on columns column_stats = analyze_and_visualize_columns(df)