在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边
组成的二维数组。每一个边
的元素是一对[u, v]
,满足 u < v
,表示连接顶点u
和v
的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v]
应满足相同的格式 u < v
。
示例 1:
输入: [[1,2], [1,3], [2,3]] 输出: [2,3] 解释: 给定的无向图为: 1 / \ 2 - 3
示例 2:
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]] 输出: [1,4] 解释: 给定的无向图为: 5 - 1 - 2 | | 4 - 3
注意:
- 输入的二维数组大小在 3 到 1000。
- 二维数组中的整数在1到N之间,其中N是输入数组的大小。
更新(2017-09-26):
我们已经重新检查了问题描述及测试用例,明确图是无向 图。对于有向图详见冗余连接II。对于造成任何不便,我们深感歉意。
并查集。
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
对于本题,先遍历所有的边,如果边的两个节点已经属于同个集合,说明两个节点已经相连,若再将这条件加入集合中,就会出现环,因此可以直接返回这条边。
class Solution:
def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
p = list(range(1010))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for a, b in edges:
if find(a) == find(b):
return [a, b]
p[find(a)] = find(b)
return []
class Solution {
private int[] p;
public int[] findRedundantConnection(int[][] edges) {
p = new int[1010];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
for (int[] e : edges) {
if (find(e[0]) == find(e[1])) {
return e;
}
p[find(e[0])] = find(e[1]);
}
return null;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
p.resize(1010);
for (int i = 0; i < p.size(); ++i) p[i] = i;
for (auto e : edges)
{
if (find(e[0]) == find(e[1])) return e;
p[find(e[0])] = find(e[1]);
}
return {};
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func findRedundantConnection(edges [][]int) []int {
p = make([]int, 1010)
for i := 0; i < len(p); i++ {
p[i] = i
}
for _, e := range edges {
if find(e[0]) == find(e[1]) {
return e
}
p[find(e[0])] = find(e[1])
}
return nil
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}