-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvert_to_csv.py
79 lines (53 loc) · 2.23 KB
/
convert_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#Helper function to convert extracted table image into a csv file
#Doesnt work that great (just a backup method)
import random
import os
from os import listdir
from xml.etree import ElementTree
import cv2
import glob
from PIL import Image
from random import randrange
import numpy as np
import pytesseract
def convert(image):
i=cv2.read(image_path)
gray_image = cv2.cvtColor(i, cv2.COLOR_BGR2GRAY)
threshold_img = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
kernel = np.ones((1, 1), np.uint8)
threshold_img = cv2.dilate(threshold_img, kernel, iterations=1)
threshold_img = cv2.erode(threshold_img, kernel, iterations=1)
#configuring parameters for tesseract
from pytesseract import Output
custom_config = r'--oem 3 --psm 6'
# now feeding image to tesseract
details = pytesseract.image_to_data(threshold_img, output_type=Output.DICT,config=custom_config)
print(details.keys())
from pytesseract import Output
custom_config = r'--oem 3 --psm 6'
total_boxes = len(details['text'])
for sequence_number in range(total_boxes):
if int(details['conf'][sequence_number]) >5:
(x, y, w, h) = (details['left'][sequence_number], details['top'][sequence_number], details['width'][sequence_number], details['height'][sequence_number])
threshold_img = cv2.rectangle(threshold_img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# display image
# now feeding image to tesseract
details = pytesseract.image_to_data(threshold_img, output_type=Output.DICT,config=custom_config)
parse_text = []
word_list = []
last_word = ''
for word in details['text']:
if word!='':
word_list.append(word)
last_word = word
if (last_word!='' and word == '') or (word==details['text'][-1]):
parse_text.append(word_list)
word_list = []
import csv
# saving the extracted text output to a txt file
with open('result.txt','w', newline="") as file:
csv.writer(file, delimiter=" ").writerows(parse_text)
import pandas as pd
# reading the txt file into a dataframe to convert to csv file
df = pd.read_csv("result.txt",delimiter='\t')
df.to_csv('result.csv')