-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonte_carlo_odmr_floquet_B_x.py
358 lines (332 loc) · 11.9 KB
/
monte_carlo_odmr_floquet_B_x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import esdr_floquet_lib
import numpy as np
import secrets
import time
import datetime
import argparse
import os.path
import logging
logger = logging.getLogger(__name__)
def get_Floquet_Hamiltonian_shape(arr1, arr2, N):
shape = (len(arr1), len(arr2), 6*N+3, 6*N+3)
return shape
def get_transition_probability_shape(arr1, arr2):
shape = (len(arr1), len(arr2))
return shape
def get_random(mean, stdev, shape=None, rng=None):
if rng is None:
import secrets
seed = secrets.randbits(128)
rng = np.random.default_rng(seed)
random = rng.normal(size=shape, loc=mean, scale=stdev)
return random
def get_params():
from math import pi
MHz = 1e6
GHz = 1e9
gauss = 1e-4 # T
p = esdr_floquet_lib.Params()
p.gamma_NV = (2*pi)*2.8025e10 # rad/(s T)
# p.B_x = 3e-4 # tesla
p.B_y = 3e-4 # tesla
p.B_z = 5e-4 # tesla
p.M_x = 2.0*MHz*(2*pi)
p.N = 4
p.MW_step = 0.1*MHz
p.D_GS = 2.87*GHz*(2*pi)
# p.Omega_RF_power = 0.98*MHz*(2*pi)
p.Omega_RF_power = 0.0 # No RF
p.omega_RF = 0.0 # Zero frequency
p.lambda_b = 0.12*MHz*(2*pi)
p.lambda_d = 0.12*MHz*(2*pi)
# Monte Carlo parameters.
p.N_avg = 300
p.mu_B_x = 0.0*gauss
p.sigma_B_x = 50*gauss
return p
def setup_params(params):
import math
from math import pi
MHz = 1e6
GHz = 1e9
seed = secrets.randbits(128)
params.random_seed = str(seed)
rng = np.random.default_rng(seed)
B_x_random = get_random(mean=params.mu_B_x, stdev=params.sigma_B_x, shape=params.N_avg, rng=rng)
params.B_x = B_x_random
params.omega_L = params.gamma_NV*params.B_z
# We need consistent values for MW_start_freq and MW_stop_freq
# to enable averaging, but since these values are randomly chosen
# we don't know in advance what the largest will be.
# So we use a value of mu + n*sigma, which should capture almost all values
# (missing perhaps 1 in 15787 for 4 sigma).
n_sigma = 4
B_x_max = params.mu_B_x + n_sigma*params.sigma_B_x
M_x_eff_max = esdr_floquet_lib.get_M_x_eff(params.D_GS, params.M_x, B_x_max, params.B_y)
D_GS_eff_max = esdr_floquet_lib.get_D_GS_eff(params.D_GS, params.M_x, B_x_max, params.B_y)
V = np.hypot(params.omega_L, M_x_eff_max)
# Estimate shift based on resonant frequencies.
shift = params.omega_RF/2. + np.hypot(V - params.omega_RF/2., params.Omega_RF_power)
shift_Hz = shift/(2*pi)
# Add on an extra 15 MHz to allow for peak width and bin to nearest step size.
params.MW_start_freq = params.MW_step * math.floor(((params.D_GS/(2*pi)) - shift_Hz - 15*MHz) / params.MW_step)
params.MW_stop_freq = params.MW_step * math.ceil(((D_GS_eff_max/(2*pi)) + shift_Hz + 15*MHz) / params.MW_step)
params.MW_range = params.MW_stop_freq - params.MW_start_freq
params.MW_N_steps = round(params.MW_range/params.MW_step)+1
params.MW_freqs = np.linspace(params.MW_start_freq, params.MW_stop_freq, params.MW_N_steps)
params.omega_MWs = params.MW_freqs*2*pi
params.D_GS_eff = esdr_floquet_lib.get_D_GS_eff(params.D_GS, params.M_x, params.B_x, params.B_y)
params.M_x_eff = esdr_floquet_lib.get_M_x_eff(params.D_GS, params.M_x, params.B_x, params.B_y)
params.lambda_b_prime = esdr_floquet_lib.get_lambda_b_prime(
params.lambda_b, params.lambda_b, params.omega_L, params.M_x_eff)
params.lambda_d_prime = esdr_floquet_lib.get_lambda_d_prime(
params.lambda_b, params.lambda_b, params.omega_L, params.M_x_eff)
def do_simulation(params):
arr1 = params.B_x
arr2 = params.omega_MWs
H_shape = get_Floquet_Hamiltonian_shape(arr1, arr2, params.N)
results = esdr_floquet_lib.Results()
results.H = np.empty(H_shape, dtype=np.dtype('complex128'))
results.eigvals = np.empty(H_shape[:-1], dtype=np.dtype('float64'))
results.eigvecs = np.empty(H_shape, dtype=np.dtype('complex128'))
results.P_0_B_raw = np.empty(H_shape[:-2])
results.P_0_D_raw = np.empty(H_shape[:-2])
results.P_0_0_raw = np.empty(H_shape[:-2])
env_vars = [
'SLURM_JOB_START_TIME',
'SLURM_JOB_NAME',
'SLURM_MEM_PER_CPU',
'SLURM_JOB_ID',
'SLURM_JOB_USER',
'SLURM_SUBMIT_DIR',
'SLURM_JOB_ACCOUNT'
]
for env_var in env_vars:
try:
setattr(results, env_var, os.environ[env_var])
except KeyError:
pass
date_start = datetime.datetime.now()
t_start = time.perf_counter()
for i, B_x_i in enumerate(params.B_x):
for j, omega_MW in enumerate(params.omega_MWs):
results.H[i][j] = esdr_floquet_lib.get_H_F_prime(
n = params.N,
D_GS_eff = params.D_GS_eff[i],
M_x_eff = params.M_x_eff[i],
omega_RF = params.omega_RF,
omega_MW = omega_MW,
Omega_RF_power = params.Omega_RF_power,
omega_L = params.omega_L,
lambda_b_prime = params.lambda_b_prime[i],
lambda_d_prime = params.lambda_d_prime[i],
)
results.eigvals[i][j], results.eigvecs[i][j] = np.linalg.eigh(results.H[i][j])
results.P_0_B_raw[i][j] = esdr_floquet_lib.P_alpha_beta('0', 'B', results.eigvecs[i][j])
results.P_0_D_raw[i][j] = esdr_floquet_lib.P_alpha_beta('0', 'D', results.eigvecs[i][j])
results.P_0_0_raw[i][j] = esdr_floquet_lib.P_alpha_beta('0', '0', results.eigvecs[i][j])
t_stop = time.perf_counter()
date_stop = datetime.datetime.now()
del results.H
del results.eigvecs
del results.eigvals
results.duration_s = t_stop - t_start
results.date_start_iso = date_start.isoformat()
results.date_stop_iso = date_stop.isoformat()
results.date_start_ctime = date_start.ctime()
results.date_stop_ctime = date_stop.ctime()
results.date_start_locale_time = date_start.strftime("%c")
results.date_stop_locale_time = date_stop.strftime("%c")
results.date_start_unix = time.mktime(date_start.timetuple())
results.date_stop_unix = time.mktime(date_stop.timetuple())
# Remove any sweeps that contain NaNs since these cannot be averaged.
results.P_0_0 = results.P_0_0_raw[~np.isnan(results.P_0_0_raw).any(axis=1)]
results.P_0_B = results.P_0_B_raw[~np.isnan(results.P_0_B_raw).any(axis=1)]
results.P_0_D = results.P_0_D_raw[~np.isnan(results.P_0_D_raw).any(axis=1)]
results.P_0_0_avg = np.mean(results.P_0_0, axis=0)
results.P_0_B_avg = np.mean(results.P_0_B, axis=0)
results.P_0_D_avg = np.mean(results.P_0_D, axis=0)
results.P_0_0_std = np.std(results.P_0_0, axis=0)
results.P_0_B_std = np.std(results.P_0_B, axis=0)
results.P_0_D_std = np.std(results.P_0_D, axis=0)
results.compression = {
'P_0_0': 'lzf',
'P_0_B': 'lzf',
'P_0_D': 'lzf',
'P_0_0_avg': 'lzf',
'P_0_B_avg': 'lzf',
'P_0_D_avg': 'lzf',
'P_0_0_std': 'lzf',
'P_0_B_std': 'lzf',
'P_0_D_std': 'lzf',
}
results.exclude = [
'compression',
'exclude',
'H',
'eigvals',
'eigvecs',
'P_0_0_raw',
'P_0_B_raw',
'P_0_D_raw',
]
params.compression = {
'MW_freqs': 'lzf',
'omega_MWs': 'lzf',
'B_x': 'lzf',
'D_GS_eff': 'lzf',
'M_x_eff': 'lzf',
'lambda_b_prime': 'lzf',
'lambda_d_prime': 'lzf',
}
params.exclude = ['compression', 'exclude']
return params, results
def main():
gauss = 1e-4 # T
GHz = 1e9
MHz = 1e6
kHz = 1e3
pi = np.pi
parser = argparse.ArgumentParser(
description='ODMR simulation via Floquet, B_x Monte Carlo')
parser.add_argument(
'--n-avg',
type=int,
help='number of averages')
parser.add_argument(
'--mu-Bx',
type=str,
default=None,
help='mu_Bx [T]')
parser.add_argument(
'--Mx',
type=str,
default=None,
help='M_x [rad/s]')
parser.add_argument(
'--By',
type=str,
default=None,
help='B_y [T]')
parser.add_argument(
'--Bz',
type=str,
default=None,
help='B_z [T]')
parser.add_argument(
'--Dgs',
type=str,
default=None,
help='D_gs [rad/s]')
parser.add_argument(
'--omega-rf-power',
type=str,
default=None,
help='RF power [rad/s]')
parser.add_argument(
'--omega-rf',
type=str,
default=None,
help='RF frequency [rad/s]')
parser.add_argument(
'--MW-step',
type=str,
default=None,
help='MW step [Hz]')
parser.add_argument(
'--param-start',
type=str,
default='0.0e-4',
help='parameter sweep start value')
parser.add_argument(
'--param-stop',
type=str,
default='100e-4',
help='parameter sweep stop value')
parser.add_argument(
'--param-steps',
type=int,
default=51,
help='parameter sweep number of steps')
parser.add_argument(
'--tag-filename',
default='',
help='tag to add to filename')
parser.add_argument(
'--out-dir',
default='.',
help='output directory')
parser.add_argument(
'-v',
'--verbose',
help='More verbose logging',
dest="loglevel",
default=logging.WARNING,
action="store_const",
const=logging.INFO,
)
parser.add_argument(
'-d',
'--debug',
help='Enable debugging logs',
action="store_const",
dest="loglevel",
const=logging.DEBUG,
)
args = parser.parse_args()
logging.basicConfig(level=args.loglevel)
logger.setLevel(args.loglevel)
outdir = args.out_dir
start = float(eval(args.param_start))
stop = float(eval(args.param_stop))
n_steps = args.param_steps
for i, sigma_B_x in enumerate(np.linspace(start, stop, n_steps)):
logging.info("{} of {}".format(i+1, n_steps)) # crude progress meter
params = get_params()
params.sigma_B_x = sigma_B_x
if args.n_avg is not None:
params.N_avg = args.n_avg
if args.mu_Bx is not None:
params.mu_B_x = float(eval(args.mu_Bx))
if args.Mx is not None:
params.M_x = float(eval(args.Mx))
if args.Dgs is not None:
params.D_GS = float(eval(args.Dgs))
if args.Bz is not None:
params.B_z = float(eval(args.Bz))
if args.By is not None:
params.B_y = float(eval(args.By))
if args.omega_rf_power is not None:
params.Omega_RF_power = float(eval(args.omega_rf_power))
if args.omega_rf is not None:
params.omega_RF = float(eval(args.omega_rf))
if args.MW_step is not None:
params.MW_step = float(eval(args.MW_step))
setup_params(params)
params, results = do_simulation(params)
filename = "odmr_floquet_monte_carlo_B_x_{}_{:04d}.hdf5".format(args.tag_filename, i)
parent_dir = os.path.join(outdir, "full")
os.makedirs(parent_dir, exist_ok=True)
filepath = os.path.join(parent_dir, filename)
esdr_floquet_lib.write_simulation_info_to_hdf5_file(
params,
results,
filepath=filepath
)
# Save data sets that only have the averages and so are ~1/N_avg smaller.
del results.P_0_0
del results.P_0_B
del results.P_0_D
del filename, parent_dir, filepath # avoid re-using these variables
filename = "odmr_floquet_monte_carlo_B_x_{}_avg_{:04d}.hdf5".format(args.tag_filename, i)
parent_dir = os.path.join(outdir, "avg")
os.makedirs(parent_dir, exist_ok=True)
filepath = os.path.join(parent_dir, filename)
esdr_floquet_lib.write_simulation_info_to_hdf5_file(
params,
results,
filepath=filepath
)
del filename, parent_dir, filepath # avoid re-using these variables
if __name__ == '__main__':
main()