-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainModel.py
42 lines (33 loc) · 1.42 KB
/
trainModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import joblib
import pandas as pd
# Load the pre-trained model
model = joblib.load('ps5_game_rating_predictor.pkl')
# Example new data with sample values
new_data = {
'url': ['https://store.playstation.com/en-us/product/UP0101-PPSA19225_00-0159266583099383'],
'id': ['1'],
'publisherName': ['Konami Digital Entertainment, Inc.'], # Sample publisher
'releaseDate': ['2024-07-20'], # Sample release date
'name': ['Sample Game'], # Sample game name
'isAgeRestricted': [False], # Sample age restriction
'activeCtaId': ['cta1'], # Sample activeCtaId
'starRating/totalRatingsCount': [50] # Sample total ratings count
}
# Convert new data to DataFrame
new_df = pd.DataFrame(new_data)
# Drop non-numeric columns that were not used in training
non_numeric_cols = ['url', 'id', 'publisherName', 'name', 'releaseDate', 'activeCtaId']
new_df.drop(columns=non_numeric_cols, inplace=True)
# Ensure the correct dtype for isAgeRestricted
new_df['isAgeRestricted'] = new_df['isAgeRestricted'].astype(int) # Convert boolean to int
# Manually specify the features used during training
# Ensure this list matches exactly the features used during training
training_features = [
'isAgeRestricted'
]
# Ensure new_df has the same columns as used during training
new_df = new_df[training_features]
# Make prediction
prediction = model.predict(new_df)
# Print the prediction
print(f'Predicted Average Rating: {prediction[0]}')