-
Notifications
You must be signed in to change notification settings - Fork 3
/
walkthrough_crime_deep_dive.R
244 lines (170 loc) · 7.43 KB
/
walkthrough_crime_deep_dive.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Walkthrough - Drug Crime DeepDive
library(magrittr) # %<>%
library(tidyverse) # ggplot2 2.2.1.9000
#### Geocode ----------------------------------------------------------------
library(geojsonio)
# get raw crime reports from ODP
crime_raw <- geojson_read("https://opendata.arcgis.com/datasets/d1877e350fad45d192d233d2b2600156_7.geojson",
parse = TRUE) %>% # 2 element list
.$features %>% # 3 column data frame, table of interest is nested in column 2
.$properties # 8 column data frame, got it
head(crime_raw)
# check date range
crime_raw$DateReported %>% as.POSIXct() %>% range()
# "2013-02-05 EST" "2017-12-11 EST"
# build a mailing address to send to the Google GeoCoder
crime_raw %<>% mutate(address = paste(BlockNumber, StreetName, "Charlottesville VA"))
library(ggmap)
lon_lat <- geocode(head(crime_raw$address)) # failed geocodes happen, most are successful on repeat queries
lon_lat
crime_coded <- bind_cols(head(crime_raw), lon_lat) # bolt on coordinates so now we could plot
# Read in data thats been all clean up
crime <- read_csv("https://raw.githubusercontent.com/NathanCDay/cville_crime/master/crime_geocode.csv")
# not all address can be coded
sum(complete.cases(crime)) / nrow(crime) # 0.9999373, most can
crime %<>% filter(complete.cases(crime))
# re-check date range
crime$DateReported %>% as.POSIXct() %>% range()
# "2012-12-04 00:00:00 EST" "2017-12-02 01:48:00 EST"
#### Plotting ----------------------------------------------------------------
# first pass for plotting
ggplot(crime, aes(lon, lat)) +
geom_point(shape = 1, size = 3)
# get census shape files from ODP
census <- geojson_read("https://opendata.arcgis.com/datasets/e60c072dbb734454a849d21d3814cc5a_14.geojson",
what = "sp") # SpatialPolygonsDataFrame object
class(census)
# convert to sf object
library(sf)
census %<>% st_as_sf()
class(census)
# plot it
ggplot(census) +
geom_sf()
head(census)
names(census) %<>% tolower()
census %<>% select(geometry, starts_with("h"), objectid:other) # keep some additional variables to go with the shaeps
#### Spatial Filter --------------------------------------------------------
# convert crime to sf too
class(crime)
crime %<>% st_as_sf(coords = c("lon", "lat"), # specify vars with lon/lat info
crs = st_crs(census)) # use the same coordinate reference system as census
class(crime)
# plot both together
ggplot(sample_frac(crime, .1)) +
geom_sf(alpha = .1) + # ~3,000 points take a second, 30,000 takes too long
geom_sf(data = census, fill = "blue", alpha = .5) ->
# filter to only cases within the census polygons
crime %<>% mutate(within = st_within(crime, census) %>% # returns the objectid for the block it falls within
as.numeric()) # returns NA for those outside
crime %<>% filter(!is.na(within)) # drop the outsiders
# replot for visual confirmation
ggplot(sample_frac(crime, .1)) +
geom_sf(alpha = .1) +
geom_sf(data = census, fill = "green", alpha = .5)
#### Frequent Addresses -----------------------------------------------------
# build a drug crime flag
crime %<>% mutate(drug_flag = ifelse(grepl("drug", Offense, ignore.case = TRUE),
"drugs", "not_drugs"))
# check offenses involved
filter(crime, drug_flag == "drugs") %>% with(table(Offense))
# drop DARE class
crime %<>% filter(Offense != "DRUG AWARENESS PRESENTATION")
# summarise by address
# for the presentation
# saveRDS(census, "data/census_sf.RDS")
# saveRDS(crime, "data/crime_sf.RDS")
crime_counts <- crime %>%
group_by(address, drug_flag) %>% # geometry column automatically comes with :)
count() %>%
ungroup() %>% # geom_sf() doesn't like groupped dfs
arrange(n) # so the biggest dots get plotted last
saveRDS(crime_counts, "data/crime_counts.RDS")
library(viridis) # bc it's pretty
ggplot(crime_counts) +
geom_sf(data = census) +
geom_sf(aes(size = n, color = n, alpha = n)) +
scale_color_viridis() +
facet_wrap(~drug_flag)
# for presentation
ggplot(crime_counts) +
geom_sf(data = census) +
geom_sf(aes(size = n, color = n, alpha = n)) +
scale_color_viridis() +
facet_wrap(~drug_flag) +
theme(axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position = "none")
saveRDS(crime_counts, "data/crime_counts_sf.RDS")
# check the highest addresss for both flags
# check if proportions are equal
station_props <- arrange(crime_counts, -n) %>%
group_by(drug_flag) %>%
add_count(wt = n) %>%
slice(1)
summarise(station_props, prop_total = n / nn)
with(station_props, prop.test(n, nn)) # confirms difference
crime %<>% filter(address != "600 E MARKET ST Charlottesville VA")
#### Group Summaries -----------------------------------------------------
crime_block <- st_set_geometry(crime, NULL) %>% # need to remove sf geometry property for spread to work
group_by(within, drug_flag) %>%
count() %>%
spread(drug_flag, n) %>%
# rowwise() %>%
mutate(frac_drugs = drugs / sum(drugs + not_drugs)) %>% ungroup()
# join back into census
census %<>% inner_join(crime_block, by = c("objectid" = "within"))
hist(census$frac_drugs)
ggplot(census) +
geom_sf(aes(fill = frac_drugs)) +
scale_fill_viridis()
### Spatial correlation ---------------------------------------------------
library(spdep) # requires sp objects
census_sp <- as(census, "Spatial") # covert sf to sp
block_nb <- poly2nb(census_sp) # build a neighbor network
plot(census_sp); plot(block_nb, coordinates(census_sp), add = TRUE) # see the network
# see the var
ggplot(census) +
geom_sf(aes(fill = frac_drugs)) +
scale_fill_viridis()
# test the var
moran.mc(census_sp$frac_drugs, nb2listw(block_nb), nsim = 999) # confirmed clustering
# repeat for population
ggplot(census) +
geom_sf(aes(fill = population)) +
scale_fill_viridis()
moran.mc(census_sp$population, nb2listw(block_nb), nsim = 999) # not
# because the county land prevents all of the UVA centric blocks from touching are not conne
# GLMs ------
library(tidycensus)
# get age and income variables to join with census
cvl <- get_acs(geography = "block group", county = "Charlottesville", state = "VA",
variables = c("B19013_001", "B01002_001") )
# clean up variabl names
decode <- c("income", "age") %>% set_names(c("B19013_001", "B01002_001"))
cvl$variable %<>% decode[.]
# format the data for joining
cvl %<>% select(GEOID, variable, estimate) %>%
spread(variable, estimate)
# viz check
ggplot(cvl, aes(age, income)) +
geom_point() # missing values
# let's impute them as average of neighbors once joined to census
cvl %<>% rename(blockgroup = GEOID)
census %<>% full_join(cvl)
# sequester the missing values value
miss <- census %>% filter(is.na(income))
# calculate the mean its neightbors
miss$income <- st_touches(miss, census) %>% # return the row_ids for adjacent polygons
map_dbl(~ census[., ] %>% with(mean(income))) # calculate the means per missing block
# builder decoder
dc <- miss$income %>% set_names(miss$objectid)
# back together again
census$income %<>% ifelse(is.na(.), dc[as.character(census$OBJECTID)], .)
# bc drug laws are racist
census %<>% mutate(frac_black = black / pop)
# pred column positions for ggpairs()
pred_cols <- match(c("frac_drugs", "frac_vacant", "age", "income", "frac_black"), names(census))
ggpairs(census, columns = pred_cols)
# model
mod <- glm(frac_drugs ~ frac_black + income, data = census, family = quasibinomial())
summary(mod)
resid(mod) %>% hist()