-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
118 lines (95 loc) · 4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import logging
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from sklearn.decomposition import PCA
logger = logging.getLogger(__name__)
def _project_to_l2_ball(z):
# return z / np.maximum(np.sqrt(np.sum(z**2, axis=1))[:, None], 1)
# return z / np.sqrt(np.sum(z**2, axis=1))[:, None]
# return z / np.max(np.sqrt(np.sum(z**2, axis=1))[:, None])
return z
def _generate_latent_from_pca(train_loader, z_dim):
print("[Latent Init] Preparing PCA")
indices, images = zip(*[
(indices, images) for indices, images in train_loader])
indices, images = torch.cat(indices), torch.cat(images)
print("[Latent Init] Performing the actual PCA")
pca = PCA(n_components=z_dim)
pca.fit(images.view(images.size()[0], -1).numpy())
print("[Latent Init] Creating and populating the latent variables")
Z = np.empty((len(train_loader.dataset), z_dim))
Z[indices] = pca.transform(images.view(images.size()[0], -1).numpy())
Z = _project_to_l2_ball(Z)
Z = torch.tensor(Z, requires_grad=True).float()
return Z
def _disc_or_generation(train_loader, z_dim):
"""Wrapper function to decide if we initialize from disc or by generating
"""
_path = '/tmp/GLO_pca_init_{}_{}.pt'.format(
train_loader.dataset.base.filename, z_dim)
if os.path.isfile(_path) and False:
print(
'[Latent Init] PCA already calculated before and saved at {}'.
format(_path))
Z = torch.load(_path)
else:
Z = _generate_latent_from_pca(train_loader, z_dim)
torch.save(Z, _path)
return Z
class LatentVariables(nn.Module):
def __init__(self, train_loader, z_dim=100):
super(LatentVariables, self).__init__()
self.Z = Parameter(_disc_or_generation(train_loader, z_dim))
def forward(self, indices):
return self.Z[indices]
class Generator(nn.Module):
"""Vanilla DCGAN generator
Copied from https://github.com/pytorch/examples/blob/master/dcgan/main.py
Minor adaptation to match the 32x32 dimension on CIFAR10"""
def __init__(self, train_loader, z_dim=100, n_filters=64):
super(Generator, self).__init__()
self.z_dim = z_dim
index, image = train_loader.dataset[0]
out_channels, out_width, out_height = image.size()
assert out_width in [32, 64]
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(z_dim, n_filters * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(n_filters * 8),
nn.ReLU(True),
# state size. (n_filters*8) x 4 x 4
nn.ConvTranspose2d(
n_filters * 8, n_filters * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_filters * 4),
nn.ReLU(True),
# state size. (n_filters*4) x 8 x 8
nn.ConvTranspose2d(
n_filters * 4, n_filters * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_filters * 2),
nn.ReLU(True),
# state size. (n_filters*2) x 16 x 16
# nn.ConvTranspose2d(
# n_filters * 2, n_filters, 4, 2, 1, bias=False),
# nn.BatchNorm2d(n_filters),
# nn.ReLU(True),
# state size. (n_filters) x 32 x 32
# nn.ConvTranspose2d(n_filters, out_channels, 4, 2, 1, bias=False),
nn.ConvTranspose2d(
n_filters * 2, out_channels, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (out_channels) x 64 x 64
)
def forward(self, code):
return self.main(code.view(code.size(0), self.z_dim, 1, 1))
class CombinedModel(nn.Module):
def __init__(self, train_loader, z_dim=100, n_filters=64):
super(CombinedModel, self).__init__()
self.Z = LatentVariables(train_loader, z_dim)
self.Generator = Generator(train_loader, z_dim)
def forward(self, index):
code = self.Z(index)
# code = code.view(code.size(0), self.z_dim, 1, 1)
return self.Generator(code)