-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
197 lines (162 loc) · 6.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from collections import defaultdict
import os
import logging
import torch
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
from tensorboardX import SummaryWriter
import tqdm
import numpy as np
from ignite.engine import Events, create_supervised_trainer
from ignite.metrics import RunningAverage, Loss
from model import CombinedModel
from utils import IndexToImageDataset, LapLoss
def setup_logger(level='DEBUG'):
"""Setup personal logger and its handler for this module
All of this is necessary in order to only get the debug messages from this
module, otherwise I get tons of messages from all possible third party
imports.
"""
logger = logging.getLogger(__name__)
hdlr = logging.StreamHandler()
formatter = logging.Formatter(
fmt='%(levelname)s|%(name)s|%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(level)
return logger
logger = setup_logger()
def get_dataloader(dataset, batch_size, data_path='./data'):
if dataset.lower() == 'mnist':
data_transforms = [
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]
train_data = datasets.MNIST(
data_path,
train=True,
download=True,
transform=transforms.Compose(data_transforms))
elif dataset.lower() == 'cifar10':
data_transforms = [
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
train_data = datasets.CIFAR10(
data_path,
train=True,
download=True,
transform=transforms.Compose(data_transforms))
train_loader = torch.utils.data.DataLoader(
IndexToImageDataset(train_data),
batch_size=batch_size,
shuffle=True,
num_workers=2)
return train_loader
def get_tensorboard_writer(description, path):
if description != '':
description = '_' + description
writer = SummaryWriter(log_dir=path, comment=description)
return writer
def log_images_to_tensorboard_writer(writer, images, epoch, tag='image'):
writer.add_image(
tag, torchvision.utils.make_grid(images, nrow=5, normalize=True),
epoch)
def log_graph_to_tensorboard(writer, model, device):
# Log graph to tensorboard
dummy_index = torch.ones([1, 1], dtype=torch.int64, device=device)
writer.add_graph(model, dummy_index)
def main(
# 'use_cuda': True and torch.cuda.is_available(),
data_path: ('Path where the dataset is stored', 'option', '',
str) = './data/',
seed=1,
model_learning_rate: ('', 'option', '', float) = 1,
model_momentum: ('', 'option', '', float) = 0,
latent_learning_rate: ('', 'option', '', float) = 10,
latent_momentum: ('', 'option', '', float) = 0,
batch_size: ('', 'option', '', int) = 128,
# test_batch_size: ('', 'option')=1000,
latent_size: ('', 'option', '', int) = 100,
epochs: ('', 'option', '', int) = 250,
dataset: ('', 'option', '', str) = 'cifar10',
tensorboard_description: ('', 'option', 'tensorboard_description',
str) = '',
no_cuda: ('Do not use CUDA, even if available.', 'flag',
'no-cuda') = False,
# no_tensorboard: ('', 'flag', 'no-tensorboard') = False,
tensorboard_log_dir: (
'Directory to use for the tensorboard logs. Default is `./runs/`.',
'option', 'tensorboard_log_dir', str) = None,
log_interval: ('', 'option', 'log_interval', int) = 10,
):
# Setup
use_cuda = torch.cuda.is_available() and not no_cuda
device = torch.device('cuda' if use_cuda else 'cpu')
torch.manual_seed(seed)
# Define data, model, optimizer, loss, etc.
train_loader = get_dataloader(dataset, batch_size, data_path)
model = CombinedModel(train_loader, latent_size).to(device)
optimizer = optim.Adam(model.parameters())
loss_fn = LapLoss()
trainer = create_supervised_trainer(
model, optimizer, loss_fn, device=device)
# Setup tensorboard and the overall logging and log some static data
writer = get_tensorboard_writer(tensorboard_description,
tensorboard_log_dir)
log_graph_to_tensorboard(writer, model, device)
test_indices = torch.randint(
len(train_loader.dataset), size=(10, )).to(torch.int64).to(device)
test_images = [train_loader.dataset[int(i)][1] for i in test_indices]
test_images = torch.cat(
[x.view(1, *x.size()) for x in test_images]).to(device)
log_images_to_tensorboard_writer(writer, test_images, 0, 'original_image')
desc = '[Epoch {:d}/{:d}] Loss: {:.4f}'
pbar = tqdm.tqdm(total=len(train_loader), desc=desc.format(0, epochs, 0))
@trainer.on(Events.EPOCH_STARTED)
def initialize_running_loss(engine):
engine.state.running_loss = 0
engine.state._running_loss_sum = 0
@trainer.on(Events.ITERATION_COMPLETED)
def calculate_running_loss(engine):
total_iteration = (engine.state.iteration - 1) % len(train_loader) + 1
engine.state._running_loss_sum += engine.state.output
engine.state.running_loss = (
engine.state._running_loss_sum / total_iteration)
@trainer.on(Events.ITERATION_COMPLETED)
def update_progress_bar(engine):
total_iteration = (engine.state.iteration - 1) % len(train_loader) + 1
if total_iteration % log_interval == 0:
pbar.desc = desc.format(engine.state.epoch, epochs,
engine.state.running_loss)
pbar.update(log_interval)
@trainer.on(Events.EPOCH_COMPLETED)
def refresh_progress_bar(engine):
print()
pbar.n = pbar.last_print_n = 0
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_loss(engine):
epoch = engine.state.epoch
writer.add_scalar('metrics/train_loss', engine.state.running_loss,
epoch)
@trainer.on(Events.EPOCH_COMPLETED)
def log_model_parameters(engine):
epoch = engine.state.epoch
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram(tag, value.data.cpu().numpy(), epoch)
writer.add_histogram(tag + '/grad',
value.grad.data.cpu().numpy(), epoch)
@trainer.on(Events.EPOCH_COMPLETED)
def log_reconstructed_images(engine):
output = model(test_indices)
log_images_to_tensorboard_writer(writer, output, engine.state.epoch,
'reconstructed_image')
@trainer.on(Events.COMPLETED)
def close_pbar(engine):
pbar.close()
trainer.run(train_loader, max_epochs=epochs)
if __name__ == '__main__':
import plac
plac.call(main)