diff --git a/notebooks/multi_roi_area_astimate.ipynb b/notebooks/multi_roi_area_astimate.ipynb index 84245143..cb0f79e4 100644 --- a/notebooks/multi_roi_area_astimate.ipynb +++ b/notebooks/multi_roi_area_astimate.ipynb @@ -121,7 +121,7 @@ "metadata": {}, "outputs": [], "source": [ - "anual_estimates = run_area_estimates_config(config, show_output_charts=True)" + "annual_estimates = run_area_estimates_config(config, show_output_charts=True)" ] }, { @@ -133,7 +133,7 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", - "def plot_crop_area_with_confidence(anual_estimates):\n", + "def plot_crop_area_with_confidence(annual_estimates):\n", " \"\"\"\n", " This function takes in a dictionary with crop area data and plots a bar chart \n", " with 95% confidence intervals for each region and year.\n", @@ -142,11 +142,11 @@ " data (dict): A dictionary where keys are region names and values contain \n", " crop area data, confidence intervals, and years.\n", " \"\"\"\n", - " regions = list(anual_estimates.keys())\n", + " regions = list(annual_estimates.keys())\n", " years = [2022, 2023]\n", "\n", - " crop_areas = np.array([anual_estimates[region]['crop area'] for region in regions])\n", - " crop_ci = np.array([anual_estimates[region]['95%CI crop'] for region in regions])\n", + " crop_areas = np.array([annual_estimates[region]['crop area'] for region in regions])\n", + " crop_ci = np.array([annual_estimates[region]['95%CI crop'] for region in regions])\n", "\n", " fig, ax = plt.subplots(figsize=(10, 6))\n", "\n", @@ -177,7 +177,7 @@ "metadata": {}, "outputs": [], "source": [ - "plot_crop_area_with_confidence(anual_estimates)" + "plot_crop_area_with_confidence(annual_estimates)" ] } ],