Real analysis, norms, limits, continuity, derivatives, optimization
Theorem | Location | PVS Name | Contributors |
---|---|---|---|
Cauchy Schqarz Inequality | mv_analysis@cauchy_schwarz |
cauchy_schwarz |
J Tanner Slagel |
Equivalence of Norms | mv_analysis@norms_equiv |
equiv_norm |
J Tanner Slagel |
Sequential Criterian | mv_analysis@sequential_criterian |
sequential_criterian1 |
J Tanner Slagel |
Bolzano Weierstass Theorem | mv_analysis@bolzano_weierstrass |
bolzano_weier |
J Tanner Slagel |
Extreme Value Theorem | mv_analysis@extreme_value_theorem |
extreme_value |
J Tanner Slagel |
Equivalence between Fréchet Derivative and Gradient | mv_analysis@gradient_def |
der_f_is_grad |
J Tanner Slagel |
Taylor's Theorem (n=1 case) | mv_analysis@Taylor_Thrm_Multi |
Taylors_Thm |
J Tanner Slagel |
First Order Necessary Conditions for Optimality | mv_analysis@unconstrained_first_order_optimality |
first_order_nec |
J Tanner Slagel |
Existance of Solution to Linear Program | mv_analysis@exist_solution_lp |
existance_np_1 |
J Tanner Slagel |
Multivaraite Chain Rule | mv_analysis@hcain_rule_multi |
chain_rule_multi_der_is_subdom |
J Tanner Slagel |
- J Tanner Slagel, NASA, USA
- Aaron Dutle, NASA, USA
- J Tanner Slagel, NASA, USA, [email protected]