-
Notifications
You must be signed in to change notification settings - Fork 7
/
manini.json
124 lines (124 loc) · 9.4 KB
/
manini.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
"name": "manini",
"display_name": "Manini",
"visibility": "public",
"icon": "",
"categories": [],
"schema_version": "0.2.1",
"on_activate": null,
"on_deactivate": null,
"contributions": {
"commands": [
{
"id": "manini.manini_widget",
"title": "Manini Widget",
"python_name": "manini._widget:ManiniWidget",
"short_title": null,
"category": null,
"icon": null,
"enablement": null
},
{
"id": "manini.manini_save",
"title": "Save segmentation or detection",
"python_name": "manini._widget:save_as_zip",
"short_title": null,
"category": null,
"icon": null,
"enablement": null
}
],
"readers": null,
"writers": null,
"widgets": [
{
"command": "manini.manini_widget",
"display_name": "Manini",
"autogenerate": false
},
{
"command": "manini.manini_save",
"display_name": "Export",
"autogenerate": false
}
],
"sample_data": null,
"themes": null,
"menus": {},
"submenus": null,
"keybindings": null,
"configuration": []
},
"package_metadata": {
"metadata_version": "2.1",
"name": "manini",
"version": "0.0.11",
"dynamic": null,
"platform": null,
"supported_platform": null,
"summary": "An user-friendly plugin that enables to annotate images from a pre-trained model (segmentation, classification, detection) given by an user.",
"description": "# manini\n\n[![License BSD-3](https://img.shields.io/pypi/l/manini.svg?color=green)](https://github.com/hereariim/manini/raw/main/LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/manini.svg?color=green)](https://pypi.org/project/manini)\n[![Python Version](https://img.shields.io/pypi/pyversions/manini.svg?color=green)](https://python.org)\n[![tests](https://github.com/hereariim/manini/workflows/tests/badge.svg)](https://github.com/hereariim/manini/actions)\n[![codecov](https://codecov.io/gh/hereariim/manini/branch/main/graph/badge.svg)](https://codecov.io/gh/hereariim/manini)\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/manini)](https://napari-hub.org/plugins/manini)\n\nManini (**MA**chi**N**e **IN**ference & Correct**I**on) is thought as a tool to boost the collaborative contribution of end-users to the assessment of deep learning model during their testing phase.\nIt is a user-Friendly plugin that enables to manually correct the result of an inference of deep learning model by an end-user. The plugin covers the following informational tasks: segmentation, classification and object detection.\n\n## White paper\n\nHerearii Metuarea, David Rousseau. [Toward more collaborative deep learning project management in plant phenotyping. ](https://essopenarchive.org/doi/full/10.22541/essoar.169876925.51005273/v1)\n\nESS Open Archive . October 31, 2023.\nDOI: 10.22541/essoar.169876925.51005273/v1\n\n----------------------------------\n\nThis plugin was written by Herearii Metuarea, PHENET engineer at LARIS (French laboratory located in Angers, France) in Imhorphen team (bioimaging research group lead) under the supervision by David Rousseau (Full professor). This plugin was designed in the context of the european project INVITE and PHENET.\n\n![Screenshot from 2023-11-13 00-13-13](https://github.com/hereariim/manini/assets/93375163/c602e802-71b9-48ec-a9f2-cec3e4fa8220)\n\n----------------------------------\n\nThis [napari] plugin was generated with [Cookiecutter] using [@napari]'s [cookiecutter-napari-plugin] template.\n\n<!--\nDon't miss the full getting started guide to set up your new package:\nhttps://github.com/napari/cookiecutter-napari-plugin#getting-started\n\nand review the napari docs for plugin developers:\nhttps://napari.org/stable/plugins/index.html!\n\n-->\n\n## Installation\n\nYou can install `manini` via [pip]:\n\n pip install manini\n\nTo install latest development version :\n\n pip install git+https://github.com/hereariim/manini.git\n\n\n## Description\n\nThis plugin is a tool to perform image inference. The inference is open to the model for image segmentation (binary or multiclass), image classification and object detection. The dimension of image should be the same size with the input of model.\nCurrently compatible with tensorflow h5 models and torch torchscript models. In this format, the model file must contain all the elements of the model (architecture, weights, etc). Several ongoing developments, feel free to contact us if you have some request.\n\n## Contact\n\nImhorphen team, bioimaging research group\n\n42 rue George Morel, Angers, France\n\n- Pr David Rousseau, [email protected]\n- Herearii Metuarea, [email protected] \n\n### Scheme\n\n![manini](https://github.com/hereariim/manini/assets/93375163/636a5e15-da0f-4387-8f37-b8ca89b4482b)\n\n#### Input\n\nThe user must deposit two items (+1 optional item). \n\n- A compressed file (.zip) containing the images in RGB\n\n```\n.\n\u2514\u2500\u2500 input.zip\n \u251c\u2500\u2500 im_1.JPG\n \u251c\u2500\u2500 im_2.JPG \n \u251c\u2500\u2500 im_3.JPG\n ...\n \u2514\u2500\u2500 im_n.JPG\n```\n\n- A model file (.h5 , pt or torchscript) which is the segmentation model\n- A text file (.txt) containing the names of the classes (optional)\n\nThe Ok button is used to validate the imported elements. The Run button is used to launch the segmentation.\n\n#### Process\n\nCorrection is made by selecting some classes displayed in a widget :\n\n- Paint panel for image segmentation\n\n- Table for image classification\n\n- Bounding box panel for object detection\n\n#### Output\n\n##### Segmentation + Detection\n\nThe plugin suggest 'Export' widget. When user select image and mask, the Save button allows you to obtain data in a compressed file. This file contains folders containing the images and their mask.\n\n##### Classification\n\nThe Save button allows you to obtain a csv file. This file is the table on which the user had made his modifications.\n\n#### Tutorial\n\nPlease, you can learn better if you watch a video tutorial below.\n\nPresentation video of the context where the plugin was developped : [MANINI Napari Plugin Part 1](https://www.youtube.com/watch?v=ltbMIhApwRk)\n\nTutorial video to get started : [MANINI Napari Plugin Part 2](https://www.youtube.com/watch?v=HU21VQpvRAM)\n\n\n## License\n\nDistributed under the terms of the [BSD-3] license,\n\"manini\" is free and open source software\n\n## Issues\n\nIf you encounter any problems, please [file an issue] along with a detailed description.\n\n[napari]: https://github.com/napari/napari\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\n[@napari]: https://github.com/napari\n[MIT]: http://opensource.org/licenses/MIT\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\n\n[file an issue]: https://github.com/hereariim/manini/issues\n\n[napari]: https://github.com/napari/napari\n[tox]: https://tox.readthedocs.io/en/latest/\n[pip]: https://pypi.org/project/pip/\n[PyPI]: https://pypi.org/\n\n",
"description_content_type": "text/markdown",
"keywords": null,
"home_page": "https://github.com/hereariim/manini",
"download_url": null,
"author": "Herearii Metuarea",
"author_email": "[email protected]",
"maintainer": null,
"maintainer_email": null,
"license": "BSD-3-Clause",
"classifier": [
"Development Status :: 2 - Pre-Alpha",
"Framework :: napari",
"Intended Audience :: Developers",
"License :: OSI Approved :: BSD License",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering :: Image Processing"
],
"requires_dist": [
"numpy",
"magicgui",
"qtpy",
"napari",
"scikit-image",
"pandas",
"opencv-python-headless",
"tensorflow",
"PyQt5",
"tox; extra == \"testing\"",
"pytest; extra == \"testing\"",
"pytest-cov; extra == \"testing\"",
"pytest-qt; extra == \"testing\"",
"napari; extra == \"testing\"",
"pyqt5; extra == \"testing\"",
"pytest-xvfb; extra == \"testing\"",
"numpy; extra == \"testing\"",
"magicgui; extra == \"testing\"",
"qtpy; extra == \"testing\"",
"scikit-image; extra == \"testing\"",
"pandas; extra == \"testing\"",
"opencv-python-headless; extra == \"testing\"",
"tensorflow; extra == \"testing\""
],
"requires_python": ">=3.8",
"requires_external": null,
"project_url": [
"Bug Tracker, https://github.com/hereariim/manini/issues",
"Documentation, https://github.com/hereariim/manini#README.md",
"Source Code, https://github.com/hereariim/manini",
"User Support, https://github.com/hereariim/manini/issues"
],
"provides_extra": [
"testing"
],
"provides_dist": null,
"obsoletes_dist": null
},
"npe1_shim": false
}