forked from maxfrenzel/SpectrogramVAE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_iaf.py
429 lines (308 loc) · 18 KB
/
model_iaf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import tensorflow as tf
def create_variable(name, shape):
'''Create a convolution filter variable with the specified name and shape,
and initialize it using Xavier initialition.'''
initializer = tf.contrib.layers.xavier_initializer_conv2d()
variable = tf.Variable(initializer(shape=shape), name=name)
return variable
def create_bias_variable(name, shape):
'''Create a bias variable with the specified name and shape and initialize
it to zero.'''
initializer = tf.constant_initializer(value=0.001, dtype=tf.float32)
return tf.Variable(initializer(shape=shape), name)
def upsample(value, name, factor=[2, 2]):
size = [int(value.shape[1] * factor[0]), int(value.shape[2] * factor[1])]
with tf.name_scope(name):
out = tf.image.resize_bilinear(value, size=size, align_corners=None, name=None)
return out
def upsample2(value, name, output_shape):
size = [int(output_shape[1]), int(output_shape[2])]
with tf.name_scope(name):
out = tf.image.resize_bilinear(value, size=size, align_corners=None, name=None)
return out
def two_d_conv(value, filter_, pool_kernel=[2, 2], name='two_d_conv'):
out = tf.nn.conv2d(value, filter_, strides=[1, 1, 1, 1], padding='SAME')
out = tf.contrib.layers.max_pool2d(out, pool_kernel)
return out
def two_d_deconv(value, filter_, deconv_shape, pool_kernel=[2, 2], name='two_d_conv'):
out = upsample2(value, 'unpool', deconv_shape)
# print(out)
out = tf.nn.conv2d_transpose(out, filter_, output_shape=deconv_shape, strides=[1, 1, 1, 1], padding='SAME')
# print(out)
return out
# KL divergence between posterior with autoregressive flow and prior
def kl_divergence(sigma, epsilon, z_K, param, batch_mean=True):
# logprob of posterior
log_q_z0 = -0.5 * tf.square(epsilon)
# logprob of prior
log_p_zK = 0.5 * tf.square(z_K)
# Terms from each flow layer
flow_loss = 0
for l in range(param['iaf_flow_length'] + 1):
# Make sure it can't take log(0) or log(neg)
flow_loss -= tf.log(sigma[l] + 1e-10)
kl_divs = tf.identity(log_q_z0 + flow_loss + log_p_zK)
kl_divs_reduced = tf.reduce_sum(kl_divs, axis=1)
if batch_mean:
return tf.reduce_mean(kl_divs, axis=0), tf.reduce_mean(kl_divs_reduced)
else:
return kl_divs, kl_divs_reduced
class VAEModel(object):
def __init__(self,
param,
batch_size,
activation=tf.nn.elu,
activation_conv=tf.nn.elu,
activation_nf=tf.nn.elu,
encode=False):
self.param = param
self.batch_size = batch_size
self.activation = activation
self.activation_conv = activation_conv
self.activation_nf = activation_nf
self.encode = encode
self.layers_enc = len(param['conv_channels'])
self.layers_dec = self.layers_enc
self.conv_out_shape = [7, 7]
self.conv_out_units = self.conv_out_shape[0] * self.conv_out_shape[1] * param['conv_channels'][-1]
self.cells_hidden = param['cells_hidden']
self.variables = self._create_variables()
def _create_variables(self):
'''This function creates all variables used by the network.
This allows us to share them between multiple calls to the loss
function and generation function.'''
var = dict()
with tf.variable_scope('VAE'):
with tf.variable_scope("Encoder"):
var['encoder_conv'] = list()
with tf.variable_scope('conv_stack'):
for l in range(self.layers_enc):
with tf.variable_scope('layer{}'.format(l)):
current = dict()
if l == 0:
channels_in = 1
else:
channels_in = self.param['conv_channels'][l - 1]
channels_out = self.param['conv_channels'][l]
current['filter'] = create_variable("filter",
[3, 3, channels_in, channels_out])
# current['bias'] = create_bias_variable("bias",
# [channels_out])
var['encoder_conv'].append(current)
with tf.variable_scope('fully_connected'):
layer = dict()
layer['W_z0'] = create_variable("W_z0",
shape=[self.conv_out_units, self.cells_hidden])
layer['b_z0'] = create_bias_variable("b_z0",
shape=[1, self.cells_hidden])
layer['W_mu'] = create_variable("W_mu",
shape=[self.cells_hidden, self.param['dim_latent']])
layer['W_logvar'] = create_variable("W_logvar",
shape=[self.cells_hidden, self.param['dim_latent']])
layer['b_mu'] = create_bias_variable("b_mu",
shape=[1, self.param['dim_latent']])
layer['b_logvar'] = create_bias_variable("b_logvar",
shape=[1, self.param['dim_latent']])
var['encoder_fc'] = layer
with tf.variable_scope("IAF"):
var['iaf_flows'] = list()
for l in range(self.param['iaf_flow_length']):
with tf.variable_scope('layer{}'.format(l)):
layer = dict()
# Hidden state
layer['W_flow'] = create_variable("W_flow",
shape=[self.conv_out_units, self.param['dim_latent']])
layer['b_flow'] = create_bias_variable("b_flow",
shape=[1, self.param['dim_latent']])
flow_variables = list()
# Flow parameters from hidden state (m and s parameters for IAF)
for j in range(self.param['dim_latent']):
with tf.variable_scope('flow_layer{}'.format(j)):
flow_layer = dict()
# Set correct dimensionality
units_to_hidden_iaf = self.param['dim_autoregressive_nl']
flow_layer['W_flow_params_nl'] = create_variable("W_flow_params_nl",
shape=[self.param['dim_latent'] + j, units_to_hidden_iaf])
flow_layer['b_flow_params_nl'] = create_bias_variable("b_flow_params_nl",
shape=[1, units_to_hidden_iaf])
flow_layer['W_flow_params'] = create_variable("W_flow_params",
shape=[units_to_hidden_iaf,
2])
flow_layer['b_flow_params'] = create_bias_variable("b_flow_params",
shape=[1, 2])
flow_variables.append(flow_layer)
layer['flow_vars'] = flow_variables
var['iaf_flows'].append(layer)
with tf.variable_scope("Decoder"):
with tf.variable_scope('fully_connected'):
layer = dict()
layer['W_z'] = create_variable("W_z",
shape=[self.param['dim_latent'], self.conv_out_units])
layer['b_z'] = create_bias_variable("b_z",
shape=[1, self.conv_out_units])
var['decoder_fc'] = layer
var['decoder_deconv'] = list()
with tf.variable_scope('deconv_stack'):
for l in range(self.layers_enc):
with tf.variable_scope('layer{}'.format(l)):
current = dict()
channels_in = self.param['conv_channels'][-1 - l]
if l == self.layers_enc - 1:
channels_out = 1
else:
channels_out = self.param['conv_channels'][-l - 2]
current['filter'] = create_variable("filter",
[3, 3, channels_out, channels_in])
# current['bias'] = create_bias_variable("bias",
# [channels_out])
var['decoder_deconv'].append(current)
return var
def _create_network(self, input_batch, keep_prob=1.0, encode=False):
# -----------------------------------
# Encoder
# Do encoder calculation
encoder_hidden = input_batch
for l in range(self.layers_enc):
# print(encoder_hidden)
encoder_hidden = two_d_conv(encoder_hidden, self.variables['encoder_conv'][l]['filter'],
self.param['max_pooling'][l])
encoder_hidden = self.activation_conv(encoder_hidden)
# print(encoder_hidden)
encoder_hidden = tf.reshape(encoder_hidden, [-1, self.conv_out_units])
# print(encoder_hidden)
# Additional non-linearity between encoder hidden state and prediction of mu_0,sigma_0
mu_logvar_hidden = tf.nn.dropout(self.activation(tf.matmul(encoder_hidden,
self.variables['encoder_fc']['W_z0'])
+ self.variables['encoder_fc']['b_z0']),
keep_prob=keep_prob)
# print(mu_logvar_hidden)
encoder_mu = tf.add(tf.matmul(mu_logvar_hidden, self.variables['encoder_fc']['W_mu']),
self.variables['encoder_fc']['b_mu'], name='ZMu')
encoder_logvar = tf.add(tf.matmul(mu_logvar_hidden, self.variables['encoder_fc']['W_logvar']),
self.variables['encoder_fc']['b_logvar'], name='ZLogVar')
# print(encoder_mu)
# Convert log variance into standard deviation
encoder_std = tf.exp(0.5 * encoder_logvar)
# Sample epsilon
epsilon = tf.random_normal(tf.shape(encoder_std), name='epsilon')
if encode:
z0 = tf.identity(encoder_mu, name='LatentZ0')
else:
z0 = tf.identity(tf.add(encoder_mu, tf.multiply(encoder_std, epsilon),
name='LatentZ0'))
# -----------------------------------
# Latent flow
# Lists to store the latent variables and the flow parameters
nf_z = [z0]
nf_sigma = [encoder_std]
# Do calculations for each flow layer
for l in range(self.param['iaf_flow_length']):
W_flow = self.variables['iaf_flows'][l]['W_flow']
b_flow = self.variables['iaf_flows'][l]['b_flow']
nf_hidden = self.activation_nf(tf.matmul(encoder_hidden, W_flow) + b_flow)
# Autoregressive calculation
m_list = self.param['dim_latent'] * [None]
s_list = self.param['dim_latent'] * [None]
for j, flow_vars in enumerate(self.variables['iaf_flows'][l]['flow_vars']):
# Go through computation one variable at a time
if j == 0:
hidden_autoregressive = nf_hidden
else:
z_slice = tf.slice(nf_z[-1], [0, 0], [-1, j])
hidden_autoregressive = tf.concat(axis=1, values=[nf_hidden, z_slice])
W_flow_params_nl = flow_vars['W_flow_params_nl']
b_flow_params_nl = flow_vars['b_flow_params_nl']
W_flow_params = flow_vars['W_flow_params']
b_flow_params = flow_vars['b_flow_params']
# Non-linearity at current autoregressive step
nf_hidden_nl = self.activation_nf(tf.matmul(hidden_autoregressive,
W_flow_params_nl) + b_flow_params_nl)
# Calculate parameters for normalizing flow as linear transform
ms = tf.matmul(nf_hidden_nl, W_flow_params) + b_flow_params
# Split into individual components
# m_list[j], s_list[j] = tf.split_v(value=ms,
# size_splits=[1,1],
# split_dim=1)
m_list[j], s_list[j] = tf.split(value=ms,
num_or_size_splits=[1, 1],
axis=1)
# Concatenate autoregressively computed variables
# Add offset to s to make sure it starts out positive
# (could have also initialised the bias term to 1)
# Guarantees that flow initially small
m = tf.concat(axis=1, values=m_list)
s = self.param['initial_s_offset'] + tf.concat(axis=1, values=s_list)
# Calculate sigma ("update gate value") from s
sigma = tf.nn.sigmoid(s)
nf_sigma.append(sigma)
# Perform normalizing flow
z_current = tf.multiply(sigma, nf_z[-1]) + tf.multiply((1 - sigma), m)
# Invert order of variables to alternate dependence of autoregressive structure
z_current = tf.reverse(z_current, axis=[1], name='LatentZ%d' % (l + 1))
# Add to list of latent variables
nf_z.append(z_current)
z = tf.identity(nf_z[-1], name="LatentZ")
# -----------------------------------
# Decoder
# Fully connected
decoder_hidden = tf.nn.dropout(self.activation(tf.matmul(z, self.variables['decoder_fc']['W_z'])
+ self.variables['decoder_fc']['b_z']),
keep_prob=keep_prob)
# print(decoder_hidden)
# Reshape
decoder_hidden = tf.reshape(decoder_hidden, [-1, self.conv_out_shape[0], self.conv_out_shape[1],
self.param['conv_channels'][-1]])
for l in range(self.layers_enc):
# print(decoder_hidden)
pool_kernel = self.param['max_pooling'][-1 - l]
decoder_hidden = two_d_deconv(decoder_hidden, self.variables['decoder_deconv'][l]['filter'],
self.param['deconv_shape'][l], pool_kernel)
if l < self.layers_enc - 1:
decoder_hidden = self.activation_conv(decoder_hidden)
decoder_output = tf.nn.sigmoid(decoder_hidden)
# print(decoder_output)
# return decoder_output, encoder_hidden, encoder_logvar, encoder_std
return decoder_output, encoder_mu, encoder_logvar, encoder_std, epsilon, z, nf_sigma
def loss(self,
input_batch,
name='vae',
beta=1.0):
with tf.name_scope(name):
output, encoder_mu, encoder_logvar, encoder_std, epsilon, z, nf_sigma = self._create_network(input_batch)
_, div = kl_divergence(nf_sigma, epsilon, z, self.param, batch_mean=False)
loss_latent = tf.identity(div, name='LossLatent')
print(loss_latent)
# loss_latent = tf.identity(-0.5 * tf.reduce_sum(1 + encoder_logvar
# - tf.square(encoder_mu)
# - tf.square(encoder_std), 1), name='LossLatent')
print(input_batch)
loss_reconstruction = tf.identity(-tf.reduce_sum(input_batch * tf.log(1e-8 + output)
+ (1 - input_batch) * tf.log(1e-8 + 1 - output),
[1,2]), name='LossReconstruction')
# loss_reconstruction = tf.reduce_mean(tf.pow(input_batch - output, 2))
loss = tf.reduce_mean(loss_reconstruction + beta*loss_latent, name='Loss')
# loss = tf.reduce_mean(loss_reconstruction, name='Loss')
tf.summary.scalar('loss', loss)
tf.summary.scalar('loss_rec', tf.reduce_mean(loss_reconstruction))
tf.summary.scalar('loss_kl', tf.reduce_mean(loss_latent))
tf.summary.scalar('beta', beta)
return loss
def encode_and_reconstruct(self, input_batch):
output, _, _, _, _, encoder_mu, _ = self._create_network(input_batch, encode=True)
return encoder_mu, output
def decode(self, input_batch):
z = input_batch
# Fully connected
decoder_hidden = self.activation(tf.matmul(z, self.variables['decoder_fc']['W_z'])
+ self.variables['decoder_fc']['b_z'])
# Reshape
decoder_hidden = tf.reshape(decoder_hidden, [-1, self.conv_out_shape[0], self.conv_out_shape[1],
self.param['conv_channels'][-1]])
for l in range(self.layers_enc):
pool_kernel = self.param['max_pooling'][-1 - l]
decoder_hidden = two_d_deconv(decoder_hidden, self.variables['decoder_deconv'][l]['filter'],
self.param['deconv_shape'][l], pool_kernel)
if l < self.layers_enc - 1:
decoder_hidden = self.activation_conv(decoder_hidden)
decoder_output = tf.nn.sigmoid(decoder_hidden)
return decoder_output