Skip to content

Latest commit

 

History

History
 
 

XTuner

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

XTuner 微调实践微调

image

本文档将介绍 InternLM 个人小助手认知

写在前面

微调内容需要使用 30% A100 才能完成。 本次实战营的微调内容包括了以下两个部分:

  1. SFT 数据的获取
  2. 使用 InternLM2.5-7B-Chat 模型微调

这节课你会收获:

  • 针对业务场景(如特殊自我认知的机器人)的微调能力
  • 一个属于自己的语言聊天机器人

本节课对应的视频链接:暂无

XTuner 文档链接:XTuner-doc-cn

环境配置与数据准备

本节中,我们将演示如何安装 XTuner。 推荐使用 Python-3.10 的 conda 虚拟环境安装 XTuner。

步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境

cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

步骤 1. 安装 XTuner

此处推荐源码安装,更多的安装方法请回到前面看 XTuner 文档

git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner

pip install  -e '.[all]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0

-e 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效

如果安装过程出现错误,请参考以下解决方案: > WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1007)'))': /pypi/simple/bitsandbytes/

Could not fetch URL https://mirrors.aliyun.com/pypi/simple/bitsandbytes/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='mirrors.aliyun.com', port=443): Max retries exceeded with url: /pypi/simple/bitsandbytes/ (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1007)'))) - skipping

INFO: pip is looking at multiple versions of xtuner to determine which version is compatible with other requirements. This could take a while.

ERROR: Could not find a version that satisfies the requirement bitsandbytes>=0.40.0.post4 (from xtuner) (from versions: none),可以 Ctrl + C 退出后换成 pip install --trusted-host mirrors.aliyun.com -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/

验证安装

为了验证 XTuner 是否安装正确,我们将使用命令打印配置文件。

打印配置文件: 在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。

xtuner list-cfg
输出没有报错则为此结果

xtuner list-cfg ==========================CONFIGS=========================== baichuan2_13b_base_full_custom_pretrain_e1 baichuan2_13b_base_qlora_alpaca_e3 baichuan2_13b_base_qlora_alpaca_enzh_e3 baichuan2_13b_base_qlora_alpaca_enzh_oasst1_e3 ... internlm2_1_8b_full_alpaca_e3 internlm2_1_8b_full_custom_pretrain_e1 internlm2_1_8b_qlora_alpaca_e3 internlm2_20b_full_custom_pretrain_e1 internlm2_20b_full_finetune_custom_dataset_e1 internlm2_20b_qlora_alpaca_e3 internlm2_20b_qlora_arxiv_gentitle_e3 internlm2_20b_qlora_code_alpaca_e3 internlm2_20b_qlora_colorist_e5 internlm2_20b_qlora_lawyer_e3 internlm2_20b_qlora_msagent_react_e3_gpu8 internlm2_20b_qlora_oasst1_512_e3 internlm2_20b_qlora_oasst1_e3 internlm2_20b_qlora_sql_e3 internlm2_5_chat_20b_alpaca_e3 internlm2_5_chat_20b_qlora_alpaca_e3 internlm2_5_chat_7b_full_finetune_custom_dataset_e1 internlm2_5_chat_7b_qlora_alpaca_e3 internlm2_5_chat_7b_qlora_oasst1_e3 internlm2_7b_full_custom_pretrain_e1 internlm2_7b_full_finetune_custom_dataset_e1 internlm2_7b_full_finetune_custom_dataset_e1_sequence_parallel_4 internlm2_7b_qlora_alpaca_e3 internlm2_7b_qlora_arxiv_gentitle_e3 internlm2_7b_qlora_code_alpaca_e3 internlm2_7b_qlora_colorist_e5 internlm2_7b_qlora_json_e3 internlm2_7b_qlora_lawyer_e3 internlm2_7b_qlora_msagent_react_e3_gpu8 internlm2_7b_qlora_oasst1_512_e3 internlm2_7b_qlora_oasst1_e3 internlm2_7b_qlora_sql_e3 ...

输出内容为 XTuner 支持微调的模型

修改提供的数据

步骤 0. 创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data
此时 `finetune` 文件夹下应该有如下结构
finetune
├── data
│   └── assistant_Tuner.jsonl
└── xtuner

步骤 1. 创建修改脚本

我们写一个脚本生成修改我们需要的微调训练数据,在当前目录下创建一个 change_script.py 文件,内容如下:

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py

打开该change_script.py文件后将下面的内容复制进去。

import json
import argparse
from tqdm import tqdm

def process_line(line, old_text, new_text):
    # 解析 JSON 行
    data = json.loads(line)
    
    # 递归函数来处理嵌套的字典和列表
    def replace_text(obj):
        if isinstance(obj, dict):
            return {k: replace_text(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [replace_text(item) for item in obj]
        elif isinstance(obj, str):
            return obj.replace(old_text, new_text)
        else:
            return obj
    
    # 处理整个 JSON 对象
    processed_data = replace_text(data)
    
    # 将处理后的对象转回 JSON 字符串
    return json.dumps(processed_data, ensure_ascii=False)

def main(input_file, output_file, old_text, new_text):
    with open(input_file, 'r', encoding='utf-8') as infile, \
         open(output_file, 'w', encoding='utf-8') as outfile:
        
        # 计算总行数用于进度条
        total_lines = sum(1 for _ in infile)
        infile.seek(0)  # 重置文件指针到开头
        
        # 使用 tqdm 创建进度条
        for line in tqdm(infile, total=total_lines, desc="Processing"):
            processed_line = process_line(line.strip(), old_text, new_text)
            outfile.write(processed_line + '\n')

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
    parser.add_argument("input_file", help="Input JSONL file to process")
    parser.add_argument("output_file", help="Output file for processed JSONL")
    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
    parser.add_argument("--new_text", default="机智流", help="Text to replace with")
    args = parser.parse_args()

    main(args.input_file, args.output_file, args.old_text, args.new_text)

然后修改如下: 打开 change_script.py ,修改 --new_textdefault="机智流" 为你的名字。

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")

    parser.add_argument("input_file", help="Input JSONL file to process")

    parser.add_argument("output_file", help="Output file for processed JSONL")

    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
-	parser.add_argument("--new_text", default="机智流", help="Text to replace with")
+   parser.add_argument("--new_text", default="你的名字", help="Text to replace with")

    args = parser.parse_args()

步骤 2. 执行脚本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

assistant_Tuner_change.jsonl 是修改后符合 XTuner 格式的训练数据。

此时 data 文件夹下应该有如下结构
|-- /finetune/data/
    |-- assistant_Tuner.jsonl
    |-- assistant_Tuner_change.jsonl

步骤 3. 查看数据

cat assistant_Tuner_change.jsonl | head -n 3

此处结果太长不再展示,主要是检查自己要修改的名字是否在数据中。

训练启动

步骤 0. 复制模型

在InternStudio开发机中的已经提供了微调模型,可以直接软链接即可。

本模型位于/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat

mkdir /root/finetune/models

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

步骤 1. 修改 Config

获取官方写好的 config

# cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./

修改以下几行

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2_5-7b-chat'
+ pretrained_model_name_or_path = '/root/finetune/models/internlm2_5-7b-chat'

- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'


evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
    tokenizer=tokenizer,
    max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

除此之外,我们还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等。

常用参数介绍
参数名 解释
data_path 数据路径或 HuggingFace 仓库名
max_length 单条数据最大 Token 数,超过则截断
pack_to_max_length 是否将多条短数据拼接到 max_length,提高 GPU 利用率
accumulative_counts 梯度累积,每多少次 backward 更新一次参数
sequence_parallel_size 并行序列处理的大小,用于模型训练时的序列并行
batch_size 每个设备上的批量大小
dataloader_num_workers 数据加载器中工作进程的数量
max_epochs 训练的最大轮数
optim_type 优化器类型,例如 AdamW
lr 学习率
betas 优化器中的 beta 参数,控制动量和平方梯度的移动平均
weight_decay 权重衰减系数,用于正则化和避免过拟合
max_norm 梯度裁剪的最大范数,用于防止梯度爆炸
warmup_ratio 预热的比例,学习率在这个比例的训练过程中线性增加到初始学习率
save_steps 保存模型的步数间隔
save_total_limit 保存的模型总数限制,超过限制时删除旧的模型文件
prompt_template 模板提示,用于定义生成文本的格式或结构
...... ......

如果想充分利用显卡资源,可以将 max_lengthbatch_size 这两个参数调大。 ⚠但需要注意的是,在训练 chat 模型时调节参数 batch_size 有可能会影响对话模型的效果。

本教程已经将改好的 config 放在了 ~/Tutorial/configs/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py 同学们可以直接使用(前置步骤路径一致的情况下)

步骤 2. 启动微调

完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_5_chat_7b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。--deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。

运行命令进行微调

cd /root/finetune
conda activate xtuner-env

xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

步骤 3. 权重转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

我们可以使用 xtuner convert pth_to_hf 命令来进行模型格式转换。

xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:CONFIG 表示微调的配置文件, PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重, SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。

除此之外,我们其实还可以在转换的命令中添加几个额外的参数,包括:

参数名 解释
--fp32 代表以fp32的精度开启,假如不输入则默认为fp16
--max-shard-size {GB} 代表每个权重文件最大的大小(默认为2GB)
cd /root/finetune/work_dirs/assistTuner

conda activate xtuner-env

# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1 | sed 's/:$//'`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

模型格式转换完成后,我们的目录结构应该是这样子的。

目录结构
├── hf
│   ├── README.md
│   ├── adapter_config.json
│   ├── adapter_model.bin
│   └── xtuner_config.py

转换完成后,可以看到模型被转换为 HuggingFace 中常用的 .bin 格式文件,这就代表着文件成功被转化为 HuggingFace 格式了。

此时,hf 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”

可以简单理解:LoRA 模型文件 = Adapter

步骤 4. 模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

在模型合并这一步还有其他很多的可选参数,包括:

参数名 解释
--max-shard-size {GB} 代表每个权重文件最大的大小(默认为2GB)
--device {device_name} 这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
--is-clip 这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加
cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

模型合并完成后,我们的目录结构应该是这样子的。

目录结构
├── merged
│   ├── README.md
│   ├── config.json
│   ├── configuration.json
│   ├── configuration_internlm2.py
│   ├── generation_config.json
│   ├── modeling_internlm2.py
│   ├── pytorch_model-00001-of-00008.bin
│   ├── pytorch_model-00002-of-00008.bin
│   ├── pytorch_model-00003-of-00008.bin
│   ├── pytorch_model-00004-of-00008.bin
│   ├── pytorch_model-00005-of-00008.bin
│   ├── pytorch_model-00006-of-00008.bin
│   ├── pytorch_model-00007-of-00008.bin
│   ├── pytorch_model-00008-of-00008.bin
│   ├── pytorch_model.bin.index.json
│   ├── special_tokens_map.json
│   ├── tokenization_internlm2.py
│   ├── tokenization_internlm2_fast.py
│   ├── tokenizer.json
│   ├── tokenizer.model
│   └── tokenizer_config.json

在模型合并完成后,我们就可以看到最终的模型和原模型文件夹非常相似,包括了分词器、权重文件、配置信息等等。

模型 WebUI 对话

微调完成后,我们可以再次运行 xtuner_streamlit_demo.py 脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

cd ~/Tutorial/tools/L1_XTuner_code
# 直接修改脚本文件第18行
- model_name_or_path = "Shanghai_AI_Laboratory/internlm2_5-7b-chat"
+ model_name_or_path = "/root/finetune/work_dirs/assistTuner/merged"

然后,我们可以直接启动应用。

conda activate xtuner-env

streamlit run /root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py

运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射。

ssh -CNg -L 8501:127.0.0.1:8501 [email protected] -p *****

最后,通过浏览器访问:http://127.0.0.1:8501 来进行对话了。

image