forked from vipyoung/karwa_ml_school
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk_means.py
84 lines (73 loc) · 2.49 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from matplotlib import pyplot as plt
from datetime import datetime
import math
import random
from geopy.distance import great_circle
def euclidean(a, b):
return math.sqrt(sum([(a[0]-b[0])**2, (a[1] - b[1])**2]))
def distance(a, b):
"""
Points should be supplied as (lon,lat), they will then be switched to lat,lon
"""
return great_circle((a[1], a[0]), (b[1], b[0])).meters
def assignment(points, seeds):
clusters = [[] for _ in range(len(seeds))]
for i, point in enumerate(points):
min_dist = float('inf')
assignment_id = -1
for j, seed in enumerate(seeds):
dist = euclidean(seed, point)
if dist < min_dist:
min_dist = dist
assignment_id = j
assert assignment_id != -1, 'Problem with assignment'
clusters[assignment_id].append(i)
return clusters
def update_centers(clusters, points):
centers = []
for cls in clusters:
x_c = sum([points[p][0] for p in cls])/len(cls)
y_c = sum([points[p][1] for p in cls])/len(cls)
centers.append((x_c,y_c))
return centers
def k_means(k, points, max_iter=10):
seed_indexes = random.sample(range(len(points)), k)
seeds = [points[idx] for idx in seed_indexes]
centers = seeds
nb_iter = 0
while True:
nb_iter += 1
print nb_iter
old_centers = centers
clusters = assignment(points, seeds)
centers = update_centers(clusters, points)
if (old_centers == centers) or (nb_iter == max_iter):
break
return clusters
if __name__ == '__main__':
# Read points
points = []
with open('data/pure_gps.csv') as f:
for line in f:
lat,lon = line.split(',')
lat = float(lat)
lon = float(lon)
points.append((lon,lat))
# Run clustering
clusters = k_means(k=4, points=points, max_iter=10)
# Plot assignments.
point_to_cluster = dict()
for i, cls in enumerate(clusters):
print 'Len cls:', i, len(cls)
for j in cls:
point_to_cluster[j] = i
X = [p[0] for p in points]
Y = [p[1] for p in points]
colors = ['red', 'blue', 'green', 'yellow', 'black', 'orange', 'cyan']
cs = [colors[point_to_cluster[i]] for i in range(len(points))]
plt.scatter(X,Y, c=cs)
# Plot centers
centers = update_centers(clusters, points)
plt.scatter([p[0] for p in centers], [p[1] for p in centers], marker='*', s=100)
plt.axis('equal')
plt.show()