-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
281 lines (222 loc) · 10.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
import numpy as np
import librosa
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter
import cv2
import os
import soundfile as sf
from pydub import AudioSegment
from pywavefront import Wavefront
import pywavefront
def img_to_audio(image, time=3.0, rate=44100, n_fft=2048, n_iter=64, hop_length=512, contrast_stretch=False, hist_equalize=False, improve_reconstruction=False):
# Load image
img = Image.fromarray(image).convert("L")
# Apply preprocessing techniques
if contrast_stretch:
img = Image.fromarray(np.uint8(255 * (np.asarray(img) - np.min(img)) / (np.max(img) - np.min(img))))
if hist_equalize:
img = ImageOps.equalize(ImageOps.autocontrast(img)).convert("L")
# Calculate spectrogram size
spec_shape = (int(librosa.time_to_frames(1.0, sr=rate, hop_length=hop_length, n_fft=n_fft) * time), n_fft)
spec = np.asarray(img.resize(spec_shape))
spec = np.interp(spec, (spec.min(), spec.max()), (-30, 10)) # Adjust the range
spec = librosa.db_to_amplitude(spec)
if improve_reconstruction:
# Use advanced reconstruction method
audio = librosa.effects.preemphasis(librosa.feature.inverse.mel_to_audio(spec))
else:
# Use Griffin-Lim for reconstruction
audio = librosa.griffinlim(spec, n_iter=n_iter, hop_length=hop_length)
# Apply smoothing to make the audio more appealing
audio = smooth_audio(audio)
return rate, audio
def smooth_audio(audio, sigma=1):
# Apply Gaussian smoothing to the audio
smoothed_audio = gaussian_filter(audio, sigma=sigma)
return smoothed_audio
def generate_waveform(audio, rate):
# Plot the audio waveform
plt.figure(figsize=(10, 4))
plt.plot(np.arange(len(audio)) / rate, audio, color='b')
plt.title('Audio Waveform')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
st.set_option('deprecation.showPyplotGlobalUse', False)
# Display the waveform plot
st.pyplot()
def read_video_frames(uploaded_file, frame_skip=1):
# Save the uploaded video temporarily to a file
with open("temp_video.mp4", "wb") as temp_video_file:
temp_video_file.write(uploaded_file.read())
# Open the temporarily saved video file
cap = cv2.VideoCapture("temp_video.mp4")
frames = []
frame_count = 0
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Skip frames based on frame_skip value
if frame_count % frame_skip == 0:
frames.append(frame)
except Exception as e:
st.error(f"Error processing frames: {str(e)}")
finally:
# Close the video capture object and release the file
cap.release()
# Remove the temporary video file
os.remove("temp_video.mp4")
return frames
def video_to_audio(video_frames, output_audio_path, time=3.0, rate=44100, n_fft=2048, n_iter=64, hop_length=512, contrast_stretch=False, hist_equalize=False, improve_reconstruction=False):
audio_frames = []
video_frame_rate = len(video_frames) / time # Calculate the frame rate of the video
for i, frame in enumerate(video_frames):
# Calculate the corresponding time for the audio segment
audio_time = i / video_frame_rate
# Ensure that we generate audio only within the specified time
if audio_time >= time:
break
audio = img_to_audio(frame, time, rate, n_fft, n_iter, hop_length, contrast_stretch, hist_equalize, improve_reconstruction)
audio_frames.append(audio[1])
audio_frames = np.concatenate(audio_frames)
# Save the resulting audio as a WAV file
sf.write(output_audio_path, audio_frames, rate)
def obj_to_audio(obj_file_path, time=3.0, rate=22050, sigma=1):
try:
# Read and process the .obj file
obj = Wavefront(obj_file_path)
# Define the range for mapping x-coordinate (min_x and max_x) to pitch (min_pitch and max_pitch)
min_x = min(vertices, key=lambda x: x[0])[0] # Find the minimum x-coordinate in your vertices
max_x = max(vertices, key=lambda x: x[0])[0] # Find the maximum x-coordinate in your vertices
min_pitch = 100 # Minimum pitch value
max_pitch = 1000 # Maximum pitch value
# Define the range for mapping y-coordinate (min_y and max_y) to volume (min_volume and max_volume)
min_y = min(vertices, key=lambda x: x[1])[1] # Find the minimum y-coordinate in your vertices
max_y = max(vertices, key=lambda x: x[1])[1] # Find the maximum y-coordinate in your vertices
min_volume = -20 # Minimum volume in dB (e.g., -20 dB)
max_volume = 0 # Maximum volume in dB (e.g., 0 dB)
# Extract vertex positions
vertices = obj.vertices
audio_segments = [] # Store audio segments for each vertex
for vertex in vertices:
if len(vertex) != 3:
continue
x, y, z = vertex
# Map vertex positions to audio parameters (example: pitch and volume)
pitch = map_to_range(x, min_x, max_x, min_pitch, max_pitch)
volume = map_to_range(z, min_x, max_x, min_volume, max_volume)
# Create an audio segment for this vertex
vertex_audio = AudioSegment.silent(duration=int(time * 1000)) # Duration in milliseconds
vertex_audio = vertex_audio + AudioSegment.silent(duration=100) # A small gap between vertex sounds
vertex_audio = vertex_audio + create_audio_from_parameters(time, rate, pitch, volume)
audio_segments.append(vertex_audio)
# Combine all audio segments into a single audio
audio = AudioSegment.silent(duration=0)
for segment in audio_segments:
audio += segment
# Apply Gaussian smoothing to the audio
audio = audio.low_pass_filter(sigma * 1000) # Sigma in Hz
# Generate a unique output audio path
audio_path = f"output_audio_{int(time)}s.wav"
audio.export(audio_path, format="wav")
return audio_path
except Exception as e:
st.error(f"Error processing OBJ file: {str(e)}")
return None
# Helper function to map values from one range to another
def map_to_range(value, from_min, from_max, to_min, to_max):
return (value - from_min) / (from_max - from_min) * (to_max - to_min) + to_min
def create_audio_from_parameters(time, rate, pitch, volume):
# Define audio properties
duration_ms = int(time * 1000) # Duration in milliseconds
sample_rate = rate # Sample rate in Hz
num_samples = int(duration_ms * sample_rate / 1000)
# Create time values for the audio
t = np.linspace(0, time, num_samples, endpoint=False)
# Generate audio waveform based on pitch and volume
frequency = 440.0 * 2**(pitch / 12.0) # Calculate frequency from pitch (assuming A440 reference)
amplitude = 0.5 * volume # Adjust volume
# Generate a simple sine wave as an example
audio_data = amplitude * np.sin(2 * np.pi * frequency * t)
# Convert the audio data to a PyDub AudioSegment
audio_segment = AudioSegment(
audio_data.tobytes(), # Audio data as bytes
frame_rate=sample_rate, # Sample rate
sample_width=audio_data.dtype.itemsize, # Sample width in bytes
channels=1 # Mono audio
)
return audio_segment
def main():
st.title("Improved Image, Video, and 3D Object Sonification")
time = st.slider("Audio Time (seconds)", 1.0, 50.0, 3.0, 0.1)
n_fft = st.slider("n_fft", 512, 2048, 1024, 64)
hop_length = st.slider("hop_length", 256, 1024, 512, 64)
n_iter = st.slider("n_iter", 10, 100, 64, 10)
contrast_stretch = st.checkbox("Apply Contrast Stretching")
hist_equalize = st.checkbox("Apply Histogram Equalization")
improve_reconstruction = st.checkbox("Improve Griffin-Lim Reconstruction")
uploaded_file = st.file_uploader("Upload a 3D image or video", type=["jpg", "png", "jpeg", "mp4", "obj"])
frame_skip = st.slider("Frame Skip", 1, 100, 1)
if uploaded_file is not None:
# Check if the uploaded file is an image, video, or 3D object
if uploaded_file.type.startswith('video'):
# Handle video
video_frames = read_video_frames(uploaded_file, frame_skip)
st.video(uploaded_file)
output_audio_path = "output_audio.wav"
video_to_audio(
video_frames,
output_audio_path,
time=time,
n_fft=n_fft,
hop_length=hop_length,
n_iter=n_iter,
contrast_stretch=contrast_stretch,
hist_equalize=hist_equalize,
improve_reconstruction=improve_reconstruction,
)
st.success("Audio generation complete. Click the button below to download the audio.")
audio_bytes = open(output_audio_path, "rb").read()
st.audio(audio_bytes, format="audio/wav")
elif uploaded_file.name.endswith('.obj'):
# Handle 3D object
st.info("Processing the 3D object...")
# Save the uploaded .obj file temporarily
with open("temp_obj.obj", "wb") as temp_obj_file:
temp_obj_file.write(uploaded_file.read())
# Perform sonification
audio_path = obj_to_audio("temp_obj.obj")
st.success("Sonification complete. Click the button below to play the audio.")
st.audio(audio_path, format="audio/wav")
# Remove the temporary .obj file
os.remove("temp_obj.obj")
else:
# Handle image
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Generate Audio"):
# Convert the Image object to a NumPy array
image_np = np.array(image)
audio = img_to_audio(
image_np,
time=time,
n_fft=n_fft,
hop_length=hop_length,
n_iter=n_iter,
contrast_stretch=contrast_stretch,
hist_equalize=hist_equalize,
improve_reconstruction=improve_reconstruction,
)
# Display the audio with the sample rate as metadata
st.audio(audio[1], format="audio/wav", sample_rate=audio[0])
# Generate and display the waveform plot
generate_waveform(audio[1], audio[0])
if __name__ == "__main__":
main()