-
Notifications
You must be signed in to change notification settings - Fork 28
/
finetune_traj_generator.py
357 lines (290 loc) · 15.4 KB
/
finetune_traj_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import print_function
import torch
from torch.utils.data import DataLoader
from models.traj_generator import TrajGenerator
from models.reward_model import RewardModel
import models.rl as rl
import time
import math
import yaml
from torch.utils.tensorboard import SummaryWriter
import utils as u
import numpy as np
import multiprocessing as mp
config_file = 'configs/ns.yml'
# Read config file
with open(config_file, 'r') as yaml_file:
config = yaml.safe_load(yaml_file)
# Import appropriate dataset
if config['ds'] == 'sdd':
from datasets.sdd import SDD as DS
elif config['ds'] == 'ns':
from datasets.ns import NS as DS
# Initialize device:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Tensorboard summary writer:
writer = SummaryWriter(log_dir=config['opt_finetune']['log_dir'])
# Initialize datasets:
tr_set = DS(config['dataroot'],
config['train'],
t_h=config['t_h'],
t_f=config['t_f'],
grid_dim=config['args_mdp']['grid_dim'][0],
img_size=config['img_size'],
horizon=config['args_mdp']['horizon'],
grid_extent=config['grid_extent'],
num_actions=config['args_mdp']['actions'])
val_set = DS(config['dataroot'],
config['val'],
t_h=config['t_h'],
t_f=config['t_f'],
grid_dim=config['args_mdp']['grid_dim'][0],
img_size=config['img_size'],
horizon=config['args_mdp']['horizon'],
grid_extent=config['grid_extent'],
num_actions=config['args_mdp']['actions'])
# Initialize data loaders:
tr_dl = DataLoader(tr_set,
batch_size=config['opt_finetune']['batch_size'],
shuffle=True,
num_workers=config['num_workers'])
val_dl = DataLoader(val_set,
batch_size=config['opt_finetune']['batch_size'],
shuffle=True,
num_workers=config['num_workers'])
# Initialize Models:
net_r = RewardModel(config['args_r']).float().to(device)
net_r.load_state_dict(torch.load(config['opt_r']['checkpt_dir'] + '/' + 'best.tar')['model_state_dict'])
for param in net_r.parameters():
param.requires_grad = False
net_r.eval()
net_t = TrajGenerator(config['args_t']).float().to(device)
net_t.load_state_dict(torch.load(config['opt_t']['checkpt_dir'] + '/' + 'best.tar')['model_state_dict'])
mdp = rl.MDP(config['args_mdp']['grid_dim'],
horizon=config['args_mdp']['horizon'],
gamma=config['args_mdp']['gamma'],
actions=config['args_mdp']['actions'])
initial_state = config['args_mdp']['initial_state']
# Sampling parameters for policy roll-outs:
num_samples = config['opt_finetune']['num_samples']
num_clusters = config['opt_finetune']['num_clusters']
# Initialize Optimizer:
num_epochs = config['opt_finetune']['num_epochs']
optimizer = torch.optim.Adam(net_t.parameters(), lr=config['opt_finetune']['lr'])
# Load checkpoint if specified in config:
if config['opt_finetune']['load_checkpt']:
checkpoint = torch.load(config['opt_finetune']['checkpt_path'])
net_t.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
val_loss = checkpoint['loss']
min_val_loss = checkpoint['min_val_loss']
else:
start_epoch = 1
val_loss = math.inf
min_val_loss = math.inf
# ======================================================================================================================
# Main Loop
# ======================================================================================================================
# Forever increasing counter to keep track of iterations (for tensorboard log).
iters_epoch = len(tr_set) // config['opt_finetune']['batch_size']
iters = (start_epoch - 1) * iters_epoch
with mp.Pool(8) as process_pool:
for epoch in range(start_epoch, start_epoch + num_epochs):
# __________________________________________________________________________________________________________________
# Train
# __________________________________________________________________________________________________________________
# Set batchnorm layers to train mode
net_t.train()
# Variables to track training performance
tr_loss = 0
tr_time = 0
# For tracking training time
st_time = time.time()
# Load batch
for i, data in enumerate(tr_dl):
# Process inputs
hist, fut, img, svf_e, motion_feats, _, agents, _, _, img_vis, _, _, _ = data
img = img.float().to(device)
motion_feats = motion_feats.float().to(device)
agents = agents.float().to(device)
hist = hist.permute(1, 0, 2).float().to(device)
fut = fut.float().to(device)
# Compute reward and solve for policy:
r, scene_tensor = net_r(motion_feats, img)
r_detached = r.detach()
svf, pi = rl.solve(mdp, r_detached, initial_state)
# Sample policy:
waypts, scene_feats, agent_feats = rl.sample_policy(pi, mdp, num_samples, config['grid_extent'],
initial_state, scene_tensor, agents)
# Generate trajectories:
horizon = config['args_mdp']['horizon']
waypts_stacked = waypts.view(-1, horizon, 2)
waypts_stacked = waypts_stacked.permute(1, 0, 2).to(device)
scene_feats_stacked = scene_feats.view(-1, horizon, config['args_t']['scene_feat_size'])
scene_feats_stacked = scene_feats_stacked.permute(1, 0, 2).to(device)
agent_feats_stacked = agent_feats.view(-1, horizon, config['args_t']['agent_feat_size'])
agent_feats_stacked = agent_feats_stacked.permute(1, 0, 2).to(device)
hist_stacked = hist.reshape(hist.shape[0], hist.shape[1], 1, hist.shape[2])
hist_stacked = hist_stacked.repeat(1, 1, num_samples, 1)
hist_stacked = hist_stacked.view(hist_stacked.shape[0], -1, hist_stacked.shape[3])
traj = net_t(hist_stacked, waypts_stacked, scene_feats_stacked, agent_feats_stacked)
traj = traj.reshape(-1, num_samples, traj.shape[1], traj.shape[2])
# Cluster
traj_vec = traj.reshape(traj.shape[0], traj.shape[1], -1).detach().cpu().numpy()
params = [(traj_vec[ii], num_clusters) for ii in range(len(traj_vec))]
labels = process_pool.starmap(u.km_cluster, params)
traj_clustered = torch.zeros(traj.shape[0], num_clusters, traj.shape[2], traj.shape[3])
counts_clustered = torch.zeros(traj.shape[0], num_clusters)
for n in range(traj.shape[0]):
clusters = set(labels[n])
tmp1 = torch.zeros(len(clusters), traj.shape[2], traj.shape[3])
tmp2 = torch.zeros(len(clusters))
for idx, c in enumerate(clusters):
tmp = np.where(labels[n] == c)
tmp1[idx] = torch.mean(traj[n, tmp[0]], dim=0)
tmp2[idx] = len(tmp[0])
traj_clustered[n, :len(tmp2)] = tmp1
counts_clustered[n, :len(tmp2)] = tmp2
# Calculate loss
masks = torch.zeros_like(counts_clustered).to(device)
masks[counts_clustered == 0] = np.inf
traj_clustered = traj_clustered.to(device)
l_batch = u.min_ade_k(traj_clustered, fut, masks)
# Backprop:
optimizer.zero_grad()
l_batch.backward()
a = torch.nn.utils.clip_grad_norm_(net_t.parameters(), 10)
optimizer.step()
# Track train loss and train time
batch_time = time.time() - st_time
tr_loss += l_batch.item()
tr_time += batch_time
st_time = time.time()
# Tensorboard train metrics
writer.add_scalar('train/loss', l_batch.item(), iters)
# Increment global iteration counter for tensorboard
iters += 1
# Print/log train loss (path SVFs) and ETA for epoch after pre-defined steps
iters_log = config['opt_finetune']['steps_to_log_train_loss']
if i % iters_log == iters_log - 1:
eta = tr_time / iters_log * (len(tr_set) / config['opt_finetune']['batch_size'] - i)
print("Epoch no:", epoch,
"| Epoch progress:", format(i / (len(tr_set)/config['opt_finetune']['batch_size']) * 100, '0.2f'),
"| Train loss:", format(tr_loss / iters_log, '0.5f'),
"| Val loss prev epoch", format(val_loss, '0.5f'),
"| Min val loss", format(min_val_loss, '0.5f'),
"| ETA(s):", int(eta))
# Log images from train batch into tensorboard:
tb_fig_train = u.tb_traj_ft_plots(img_vis[0:8],
hist[:, 0:8, :].permute(1, 0, 2).detach().cpu(),
traj_clustered[0:8].detach().cpu(),
fut[0:8].detach().cpu(),
svf[0:8].detach().cpu(),
counts_clustered[0:8],
extent=config['grid_extent'])
writer.add_figure('train/trajectories', tb_fig_train, iters)
# Reset variables to track training performance
tr_loss = 0
tr_time = 0
# __________________________________________________________________________________________________________________
# Validate
# __________________________________________________________________________________________________________________
print('Calculating validation loss...')
# Set batchnorm/dropout layers to eval mode, stop tracking gradients
net_t.eval()
with torch.no_grad():
# Variables to track validation performance
agg_val_loss = 0
val_batch_count = 0
# Load batch
for k, data_val in enumerate(val_dl):
# Process inputs
hist, fut, img, svf_e, motion_feats, waypts_e, agents, grid_idcs, _, img_vis, _, _, _ = data_val
img = img.float().to(device)
motion_feats = motion_feats.float().to(device)
agents = agents.float().to(device)
hist = hist.permute(1, 0, 2).float().to(device)
fut = fut.float().to(device)
# Calculate reward:
r, scene_tensor = net_r(motion_feats, img)
r_detached = r.detach()
svf, pi = rl.solve(mdp, r_detached, initial_state)
# Sample policy:
waypts, scene_feats, agent_feats = rl.sample_policy(pi, mdp, num_samples, config['grid_extent'],
initial_state, scene_tensor, agents)
# Generate trajectories:
horizon = config['args_mdp']['horizon']
waypts_stacked = waypts.view(-1, horizon, 2)
waypts_stacked = waypts_stacked.permute(1, 0, 2).to(device)
scene_feats_stacked = scene_feats.view(-1, horizon, config['args_t']['scene_feat_size'])
scene_feats_stacked = scene_feats_stacked.permute(1, 0, 2).to(device)
agent_feats_stacked = agent_feats.view(-1, horizon, config['args_t']['agent_feat_size'])
agent_feats_stacked = agent_feats_stacked.permute(1, 0, 2).to(device)
hist_stacked = hist.reshape(hist.shape[0], hist.shape[1], 1, hist.shape[2])
hist_stacked = hist_stacked.repeat(1, 1, num_samples, 1)
hist_stacked = hist_stacked.view(hist_stacked.shape[0], -1, hist_stacked.shape[3])
traj = net_t(hist_stacked, waypts_stacked, scene_feats_stacked, agent_feats_stacked)
traj = traj.reshape(-1, num_samples, traj.shape[1], traj.shape[2])
# Cluster
traj_vec = traj.reshape(traj.shape[0], traj.shape[1], -1).detach().cpu().numpy()
params = [(traj_vec[ii], num_clusters) for ii in range(len(traj_vec))]
labels = process_pool.starmap(u.km_cluster, params)
traj_clustered = torch.zeros(traj.shape[0], num_clusters, traj.shape[2], traj.shape[3])
counts_clustered = torch.zeros(traj.shape[0], num_clusters)
for n in range(traj.shape[0]):
clusters = set(labels[n])
tmp1 = torch.zeros(len(clusters), traj.shape[2], traj.shape[3])
tmp2 = torch.zeros(len(clusters))
for idx, c in enumerate(clusters):
tmp = np.where(labels[n] == c)
tmp1[idx] = torch.mean(traj[n, tmp[0]], dim=0)
tmp2[idx] = len(tmp[0])
traj_clustered[n, :len(tmp2)] = tmp1
counts_clustered[n, :len(tmp2)] = tmp2
# Calculate minADE_K
masks = torch.zeros_like(counts_clustered).to(device)
masks[counts_clustered == 0] = np.inf
traj_clustered = traj_clustered.to(device)
l_batch = u.min_ade_k(traj_clustered, fut, masks)
agg_val_loss += l_batch.item()
val_batch_count += 1
# Log images from first val batch into tensorboard
if k == 0:
tb_fig_val = u.tb_traj_ft_plots(img_vis[0:8],
hist[:, 0:8, :].permute(1, 0, 2).detach().cpu(),
traj_clustered[0:8].detach().cpu(),
fut[0:8].detach().cpu(),
svf[0:8].detach().cpu(),
counts_clustered[0:8],
extent=config['grid_extent'])
writer.add_figure('val/trajectories', tb_fig_val, iters)
# Print validation losses
print('Val loss :', format(agg_val_loss / val_batch_count, '0.4f'))
val_loss = agg_val_loss / val_batch_count
# Tensorboard validation metrics
writer.add_scalar('val/loss', val_loss, iters)
writer.flush()
# Save checkpoint
if config['opt_finetune']['save_checkpoints']:
model_path = config['opt_finetune']['checkpt_dir'] + '/' + str(epoch) + '.tar'
torch.save({
'epoch': epoch,
'model_state_dict': net_t.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': val_loss,
'min_val_loss': min(val_loss, min_val_loss)
}, model_path)
# Save best model if applicable
if val_loss < min_val_loss:
min_val_loss = val_loss
model_path = config['opt_finetune']['checkpt_dir'] + '/best.tar'
torch.save({
'epoch': epoch,
'model_state_dict': net_t.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': val_loss,
'min_val_loss': min_val_loss
}, model_path)
# Close tensorboard writer
writer.close()