The SSRD dataset does not contain the ground truth of shadow-free images due to the presence of self shadow in images.
TEST RESULTS ON SRD:
- Results on SRD: DMTN_SRD | Weight: DMTN_SRD.pth
- Results on SRD: DMTN+Mask_SRD | Weight: DMTN+Mask_SRD.pth
TEST RESULTS ON ISTD:
- Results on ISTD: DMTN_ISTD | Weight: DMTN_ISTD.pth
- Results on ISTD: DMTN+Mask_ISTD | Weight: DMTN+Mask_ISTD.pth
- Results on ISTD+DA: DMTN_ISTD_DA | Weight: DMTN_ISTD_DA.pth
TEST RESULTS ON ISTD+:
- Results on ISTD+: DMTN_ISTD+ | Weight: DMTN_ISTD+.pth
- Results on ISTD+: DMTN+Mask_ISTD+ | Weight: DMTN+Mask_ISTD+.pth
TEST RESULTS ON SSRD: (DHAN and DMTN are pretrained on SRD dataset (size:420x320))
- Results of DMTN on SSRD: DMTN_SSRD | Weight: DMTN_SRD_420_320.pth
- Results of DHAN on SSRD:DHAN_SSRD
Visual comparison results of penumbra removal on the SRD dataset - (Powered by MulimgViewer)
Visual comparison results of self shadow removal on the SSRD dataset - (Powered by MulimgViewer)
Currently, MATLAB evaluation codes are used in most state-of-the-art works for shadow removal.
Our evaluation code (i.e., 1+2)
- MAE (i.e., RMSE in paper): https://github.com/tsingqguo/exposure-fusion-shadow-removal
- PSNR+SSIM: https://github.com/zhuyr97/AAAI2022_Unfolding_Network_Shadow_Removal/tree/master/codes
Notably, there are slight differences between the different evaluation codes.
- wang_cvpr2018, le_iccv2019: no imresize;
- fu_cvpr2021: first imresize, then double;
- zhu_aaai2022: first double, then imresize;
- Our evaluation code: MAE->fu_cvpr2021, psnr+ssim->zhu_aaai2022
ubuntu18.04+cuda10.2+pytorch1.7.1
- create environments
conda env create -f install.yaml
- activate environments
conda activate DMTN
For example, generate the dataset list of ISTD:
- Download:
- ISTD and SRD
- USR shadowfree images
- Syn. Shadow
- SRD shadow mask
- train_B_ISTD:
cp -r ISTD_Dataset_arg/train_B ISTD_Dataset_arg/train_B_ISTD cp -r ISTD_Dataset_arg/train_B SRD_Dataset_arg/train_B_ISTD
cp vgg19-dcbb9e9d.pth ISTD_Dataset_arg/ cp vgg19-dcbb9e9d.pth SRD_Dataset_arg/
- The data folders should be:
ISTD_Dataset_arg * train - train_A # ISTD shadow image - train_B # ISTD shadow mask - train_C # ISTD shadowfree image - shadow_free # USR shadowfree images - synC # Syn. shadow - train_B_ISTD # ISTD shadow mask * test - test_A # ISTD shadow image - test_B # ISTD shadow mask - test_C # ISTD shadowfree image * vgg19-dcbb9e9d.pth SRD_Dataset_arg * train # renaming the original `Train` folder in `SRD`. - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`. - train_B # SRD shadow mask - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`. - shadow_free # USR shadowfree images - synC # Syn. shadow - train_B_ISTD # ISTD shadow mask * test # renaming the original `test_data` folder in `SRD`. - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`. - train_B # SRD shadow mask - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`. * vgg19-dcbb9e9d.pth
- Edit
generate_flist_istd.py
: (Replace path)
ISTD_path = "/Your_data_storage_path/ISTD_Dataset_arg"
- Generate Datasets List. (Already contains ISTD+DA.)
conda activate DMTN
cd script/
python generate_flist_istd.py
- Edit
config_ISTD.yml
: (Replace path)
DATA_ROOT: /Your_data_storage_path/ISTD_Dataset_arg
For example, training+test+evaluation on ISTD dataset.
cp config/config_ISTD.yml config.yml
cp config/run_ISTD.py run.py
conda activate DMTN
python run.py
For example, test+evaluation on ISTD dataset.
- Download weight file(
DMTN_ISTD.pth
) topre_train_model/ISTD
- Copy file
cp config/config_ISTD.yml config.yml
cp config/run_ISTD.py run.py
mkdir -p checkpoints/ISTD/
cp config.yml checkpoints/ISTD/config.yml
cp pre_train_model/ISTD/DMTN_ISTD.pth checkpoints/ISTD/ShadowRemoval.pth
- Edit
run.py
. Comment the training code.
# # pre_train (no data augmentation)
# MODE = 0
# print('\nmode-'+str(MODE)+': start pre_training(data augmentation)...\n')
# for i in range(1):
# skip_train = init_config(checkpoints_path, MODE=MODE,
# EVAL_INTERVAL_EPOCH=1, EPOCH=[90,i])
# if not skip_train:
# main(MODE, config_path)
# src_path = Path('./pre_train_model') / \
# config["SUBJECT_WORD"]/(config["MODEL_NAME"]+'_pre_da.pth')
# copypth(dest_path, src_path)
# # train
# MODE = 2
# print('\nmode-'+str(MODE)+': start training...\n')
# for i in range(1):
# skip_train = init_config(checkpoints_path, MODE=MODE,
# EVAL_INTERVAL_EPOCH=0.1, EPOCH=[60,i])
# if not skip_train:
# main(MODE, config_path)
# src_path = Path('./pre_train_model') / \
# config["SUBJECT_WORD"]/(config["MODEL_NAME"]+'_final.pth')
# copypth(dest_path, src_path)
- Run
conda activate DMTN
python run.py
After evaluation, execute the following code to display the final RMSE.
python show_eval_result.py
Output:
running rmse-shadow: xxx, rmse-non-shadow: xxx, rmse-all: xxx # ISRD
This is the evaluation result of python+pytorch, which is only used during training. To get the evaluation results in the paper, you need to run the matlab code.
- Edit
src/network/network_DMTN.py
. Modify the line (https://github.com/nachifur/DMTN/blob/main/src/network/network_DMTN.py#L339).
SSRD = True
- Test like the section
4.2 Only Test and Evaluation
.
Part of the code is based upon:
- https://github.com/nachifur/LLPC
- https://github.com/vinthony/ghost-free-shadow-removal
- https://github.com/knazeri/edge-connect
@ARTICLE{liu2023decoupled,
author={Liu, Jiawei and Wang, Qiang and Fan, Huijie and Li, Wentao and Qu, Liangqiong and Tang, Yandong},
journal={IEEE Transactions on Multimedia},
title={A Decoupled Multi-Task Network for Shadow Removal},
year={2023},
volume={},
number={},
pages={1-14},
doi={10.1109/TMM.2023.3252271}}
Please contact Jiawei Liu if there is any question ([email protected]).
Sorry! Here are the revised errors:
- In Section III-C-2)-
Fig. 7 (or Fig. 5(b)) shows...
, "we can achieve feature decoupling, i.e., some channels of F represent shadow images (I_m
I_s
)".