forked from szechyjs/dsd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReedSolomon.hpp
670 lines (586 loc) · 25 KB
/
ReedSolomon.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#ifndef REEDSOLOMON_HPP_b1405fdab6374ba2a4e65e8d45ec3d80
#define REEDSOLOMON_HPP_b1405fdab6374ba2a4e65e8d45ec3d80
/**
* Code taken and adapted from www.eccpage.com/rs.c
* Credit goes to Mr Simon Rockliff.
*
* Tried before with the implementation from ITPP library but couldn't make it produce the same outputs
* expected from the P25 transmissions that I have tested. This implementation does work.
*/
/* This program is an encoder/decoder for Reed-Solomon codes. Encoding is in
systematic form, decoding via the Berlekamp iterative algorithm.
In the present form , the constants mm, nn, tt, and kk=nn-2tt must be
specified (the double letters are used simply to avoid clashes with
other n,k,t used in other programs into which this was incorporated!)
Also, the irreducible polynomial used to generate GF(2**mm) must also be
entered -- these can be found in Lin and Costello, and also Clark and Cain.
The representation of the elements of GF(2**m) is either in index form,
where the number is the power of the primitive element alpha, which is
convenient for multiplication (add the powers modulo 2**m-1) or in
polynomial form, where the bits represent the coefficients of the
polynomial representation of the number, which is the most convenient form
for addition. The two forms are swapped between via lookup tables.
This leads to fairly messy looking expressions, but unfortunately, there
is no easy alternative when working with Galois arithmetic.
The code is not written in the most elegant way, but to the best
of my knowledge, (no absolute guarantees!), it works.
However, when including it into a simulation program, you may want to do
some conversion of global variables (used here because I am lazy!) to
local variables where appropriate, and passing parameters (eg array
addresses) to the functions may be a sensible move to reduce the number
of global variables and thus decrease the chance of a bug being introduced.
This program does not handle erasures at present, but should not be hard
to adapt to do this, as it is just an adjustment to the Berlekamp-Massey
algorithm. It also does not attempt to decode past the BCH bound -- see
Blahut "Theory and practice of error control codes" for how to do this.
Simon Rockliff, University of Adelaide 21/9/89
26/6/91 Slight modifications to remove a compiler dependent bug which hadn't
previously surfaced. A few extra comments added for clarity.
Appears to all work fine, ready for posting to net!
Notice
--------
This program may be freely modified and/or given to whoever wants it.
A condition of such distribution is that the author's contribution be
acknowledged by his name being left in the comments heading the program,
however no responsibility is accepted for any financial or other loss which
may result from some unforseen errors or malfunctioning of the program
during use.
Simon Rockliff, 26th June 1991
*/
#include <math.h>
#include <stdio.h>
template <int TT>
class ReedSolomon_63
{
private:
static const int MM = 6; /* RS code over GF(2**mm) */
static const int NN = 63; /* nn=2**mm -1 length of codeword */
//int tt; /* number of errors that can be corrected */
//int kk; /* kk = nn-2*tt */
static const int KK = NN-2*TT;
// distance = nn-kk+1 = 2*tt+1
int* alpha_to;
int* index_of;
int* gg;
void generate_gf(int* generator_polinomial)
/* generate GF(2**mm) from the irreducible polynomial p(X) in pp[0]..pp[mm]
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
polynomial form -> index form index_of[j=alpha**i] = i
alpha=2 is the primitive element of GF(2**mm)
*/
{
register int i, mask;
mask = 1;
alpha_to[MM] = 0;
for (i = 0; i < MM; i++) {
alpha_to[i] = mask;
index_of[alpha_to[i]] = i;
if (generator_polinomial[i] != 0)
alpha_to[MM] ^= mask;
mask <<= 1;
}
index_of[alpha_to[MM]] = MM;
mask >>= 1;
for (i = MM + 1; i < NN; i++) {
if (alpha_to[i - 1] >= mask)
alpha_to[i] = alpha_to[MM] ^ ((alpha_to[i - 1] ^ mask) << 1);
else
alpha_to[i] = alpha_to[i - 1] << 1;
index_of[alpha_to[i]] = i;
}
index_of[0] = -1;
}
void gen_poly()
/* Obtain the generator polynomial of the tt-error correcting, length
nn=(2**mm -1) Reed Solomon code from the product of (X+alpha**i), i=1..2*tt
*/
{
register int i, j;
gg[0] = 2; /* primitive element alpha = 2 for GF(2**mm) */
gg[1] = 1; /* g(x) = (X+alpha) initially */
for (i = 2; i <= NN - KK; i++) {
gg[i] = 1;
for (j = i - 1; j > 0; j--)
if (gg[j] != 0)
gg[j] = gg[j - 1] ^ alpha_to[(index_of[gg[j]] + i) % NN];
else
gg[j] = gg[j - 1];
gg[0] = alpha_to[(index_of[gg[0]] + i) % NN]; /* gg[0] can never be zero */
}
/* convert gg[] to index form for quicker encoding */
for (i = 0; i <= NN - KK; i++)
gg[i] = index_of[gg[i]];
}
public:
ReedSolomon_63()
{
alpha_to = new int[NN + 1];
index_of = new int[NN + 1];
gg = new int[NN - KK + 1];
// Polynom used in P25 is alpha**6+alpha+1
int generator_polinomial[] = { 1, 1, 0, 0, 0, 0, 1 }; /* specify irreducible polynomial coeffts */
generate_gf(generator_polinomial);
gen_poly();
}
virtual ~ReedSolomon_63()
{
delete[] gg;
delete[] index_of;
delete[] alpha_to;
}
void encode(const int* data, int* bb)
/* take the string of symbols in data[i], i=0..(k-1) and encode systematically
to produce 2*tt parity symbols in bb[0]..bb[2*tt-1]
data[] is input and bb[] is output in polynomial form.
Encoding is done by using a feedback shift register with appropriate
connections specified by the elements of gg[], which was generated above.
Codeword is c(X) = data(X)*X**(nn-kk)+ b(X) */
{
register int i, j;
int feedback;
for (i = 0; i < NN - KK; i++)
bb[i] = 0;
for (i = KK - 1; i >= 0; i--) {
feedback = index_of[data[i] ^ bb[NN - KK - 1]];
if (feedback != -1) {
for (j = NN - KK - 1; j > 0; j--)
if (gg[j] != -1)
bb[j] = bb[j - 1] ^ alpha_to[(gg[j] + feedback) % NN];
else
bb[j] = bb[j - 1];
bb[0] = alpha_to[(gg[0] + feedback) % NN];
} else {
for (j = NN - KK - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
}
int decode(const int* input, int* recd)
/* assume we have received bits grouped into mm-bit symbols in recd[i],
i=0..(nn-1), and recd[i] is polynomial form.
We first compute the 2*tt syndromes by substituting alpha**i into rec(X) and
evaluating, storing the syndromes in s[i], i=1..2tt (leave s[0] zero) .
Then we use the Berlekamp iteration to find the error location polynomial
elp[i]. If the degree of the elp is >tt, we cannot correct all the errors
and hence just put out the information symbols uncorrected. If the degree of
elp is <=tt, we substitute alpha**i , i=1..n into the elp to get the roots,
hence the inverse roots, the error location numbers. If the number of errors
located does not equal the degree of the elp, we have more than tt errors
and cannot correct them. Otherwise, we then solve for the error value at
the error location and correct the error. The procedure is that found in
Lin and Costello. For the cases where the number of errors is known to be too
large to correct, the information symbols as received are output (the
advantage of systematic encoding is that hopefully some of the information
symbols will be okay and that if we are in luck, the errors are in the
parity part of the transmitted codeword). Of course, these insoluble cases
can be returned as error flags to the calling routine if desired. */
{
register int i, j, u, q;
int elp[NN - KK + 2][NN - KK], d[NN - KK + 2], l[NN - KK + 2], u_lu[NN - KK
+ 2], s[NN - KK + 1];
int count = 0, syn_error = 0, root[TT], loc[TT], z[TT + 1], err[NN], reg[TT
+ 1];
int irrecoverable_error = 0;
for (int i = 0; i < NN; i++)
recd[i] = index_of[input[i]]; /* put recd[i] into index form (ie as powers of alpha) */
/* first form the syndromes */
for (i = 1; i <= NN - KK; i++) {
s[i] = 0;
for (j = 0; j < NN; j++)
if (recd[j] != -1)
s[i] ^= alpha_to[(recd[j] + i * j) % NN]; /* recd[j] in index form */
/* convert syndrome from polynomial form to index form */
if (s[i] != 0)
syn_error = 1; /* set flag if non-zero syndrome => error */
s[i] = index_of[s[i]];
}
if (syn_error) /* if errors, try and correct */
{
/* compute the error location polynomial via the Berlekamp iterative algorithm,
following the terminology of Lin and Costello : d[u] is the 'mu'th
discrepancy, where u='mu'+1 and 'mu' (the Greek letter!) is the step number
ranging from -1 to 2*tt (see L&C), l[u] is the
degree of the elp at that step, and u_l[u] is the difference between the
step number and the degree of the elp.
*/
/* initialise table entries */
d[0] = 0; /* index form */
d[1] = s[1]; /* index form */
elp[0][0] = 0; /* index form */
elp[1][0] = 1; /* polynomial form */
for (i = 1; i < NN - KK; i++) {
elp[0][i] = -1; /* index form */
elp[1][i] = 0; /* polynomial form */
}
l[0] = 0;
l[1] = 0;
u_lu[0] = -1;
u_lu[1] = 0;
u = 0;
do {
u++;
if (d[u] == -1) {
l[u + 1] = l[u];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] = elp[u][i];
elp[u][i] = index_of[elp[u][i]];
}
} else
/* search for words with greatest u_lu[q] for which d[q]!=0 */
{
q = u - 1;
while ((d[q] == -1) && (q > 0))
q--;
/* have found first non-zero d[q] */
if (q > 0) {
j = q;
do {
j--;
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
q = j;
} while (j > 0);
};
/* have now found q such that d[u]!=0 and u_lu[q] is maximum */
/* store degree of new elp polynomial */
if (l[u] > l[q] + u - q)
l[u + 1] = l[u];
else
l[u + 1] = l[q] + u - q;
/* form new elp(x) */
for (i = 0; i < NN - KK; i++)
elp[u + 1][i] = 0;
for (i = 0; i <= l[q]; i++)
if (elp[q][i] != -1)
elp[u + 1][i + u - q] = alpha_to[(d[u] + NN - d[q]
+ elp[q][i]) % NN];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] ^= elp[u][i];
elp[u][i] = index_of[elp[u][i]]; /*convert old elp value to index*/
}
}
u_lu[u + 1] = u - l[u + 1];
/* form (u+1)th discrepancy */
if (u < NN - KK) /* no discrepancy computed on last iteration */
{
if (s[u + 1] != -1)
d[u + 1] = alpha_to[s[u + 1]];
else
d[u + 1] = 0;
for (i = 1; i <= l[u + 1]; i++)
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
d[u + 1] ^= alpha_to[(s[u + 1 - i]
+ index_of[elp[u + 1][i]]) % NN];
d[u + 1] = index_of[d[u + 1]]; /* put d[u+1] into index form */
}
} while ((u < NN - KK) && (l[u + 1] <= TT));
u++;
if (l[u] <= TT) /* can correct error */
{
/* put elp into index form */
for (i = 0; i <= l[u]; i++)
elp[u][i] = index_of[elp[u][i]];
/* find roots of the error location polynomial */
for (i = 1; i <= l[u]; i++)
reg[i] = elp[u][i];
count = 0;
for (i = 1; i <= NN; i++) {
q = 1;
for (j = 1; j <= l[u]; j++)
if (reg[j] != -1) {
reg[j] = (reg[j] + j) % NN;
q ^= alpha_to[reg[j]];
};
if (!q) /* store root and error location number indices */
{
root[count] = i;
loc[count] = NN - i;
count++;
};
};
if (count == l[u]) /* no. roots = degree of elp hence <= tt errors */
{
/* form polynomial z(x) */
for (i = 1; i <= l[u]; i++) /* Z[0] = 1 always - do not need */
{
if ((s[i] != -1) && (elp[u][i] != -1))
z[i] = alpha_to[s[i]] ^ alpha_to[elp[u][i]];
else if ((s[i] != -1) && (elp[u][i] == -1))
z[i] = alpha_to[s[i]];
else if ((s[i] == -1) && (elp[u][i] != -1))
z[i] = alpha_to[elp[u][i]];
else
z[i] = 0;
for (j = 1; j < i; j++)
if ((s[j] != -1) && (elp[u][i - j] != -1))
z[i] ^= alpha_to[(elp[u][i - j] + s[j]) % NN];
z[i] = index_of[z[i]]; /* put into index form */
};
/* evaluate errors at locations given by error location numbers loc[i] */
for (i = 0; i < NN; i++) {
err[i] = 0;
if (recd[i] != -1) /* convert recd[] to polynomial form */
recd[i] = alpha_to[recd[i]];
else
recd[i] = 0;
}
for (i = 0; i < l[u]; i++) /* compute numerator of error term first */
{
err[loc[i]] = 1; /* accounts for z[0] */
for (j = 1; j <= l[u]; j++)
if (z[j] != -1)
err[loc[i]] ^= alpha_to[(z[j] + j * root[i]) % NN];
if (err[loc[i]] != 0) {
err[loc[i]] = index_of[err[loc[i]]];
q = 0; /* form denominator of error term */
for (j = 0; j < l[u]; j++)
if (j != i)
q += index_of[1
^ alpha_to[(loc[j] + root[i]) % NN]];
q = q % NN;
err[loc[i]] = alpha_to[(err[loc[i]] - q + NN) % NN];
recd[loc[i]] ^= err[loc[i]]; /*recd[i] must be in polynomial form */
}
}
} else {
/* no. roots != degree of elp => >tt errors and cannot solve */
irrecoverable_error = 1;
}
} else {
/* elp has degree >tt hence cannot solve */
irrecoverable_error = 1;
}
} else {
/* no non-zero syndromes => no errors: output received codeword */
for (i = 0; i < NN; i++)
if (recd[i] != -1) /* convert recd[] to polynomial form */
recd[i] = alpha_to[recd[i]];
else
recd[i] = 0;
}
if (irrecoverable_error) {
for (i = 0; i < NN; i++) /* could return error flag if desired */
if (recd[i] != -1) /* convert recd[] to polynomial form */
recd[i] = alpha_to[recd[i]];
else
recd[i] = 0; /* just output received codeword as is */
}
return irrecoverable_error;
}
protected:
int bin_to_hex(const char* input)
{
int output = ((input[0] != 0)? 32 : 0) |
((input[1] != 0)? 16 : 0) |
((input[2] != 0)? 8 : 0) |
((input[3] != 0)? 4 : 0) |
((input[4] != 0)? 2 : 0) |
((input[5] != 0)? 1 : 0);
return output;
}
void hex_to_bin(int input, char* output)
{
output[0] = ((input & 32) != 0)? 1 : 0;
output[1] = ((input & 16) != 0)? 1 : 0;
output[2] = ((input & 8) != 0)? 1 : 0;
output[3] = ((input & 4) != 0)? 1 : 0;
output[4] = ((input & 2) != 0)? 1 : 0;
output[5] = ((input & 1) != 0)? 1 : 0;
}
};
/**
* Convenience class that does a Reed-Solomon (36,20,17) error correction adapting input and output to
* the DSD data format: hex words packed as char arrays.
*/
class DSDReedSolomon_36_20_17 : public ReedSolomon_63<8>
{
public:
// tt = (dd-1)/2
// dd = 17 --> tt = 8
DSDReedSolomon_36_20_17() : ReedSolomon_63<8>()
{
// Does nothing
}
/**
* Does a Reed-Solomon decode adapting the input and output to the expected DSD data format.
* \param hex_data Data packed bits, originally a char[20][6], so containing 20 hex works, each char
* is a bit. Bits are corrected in place.
* \param hex_parity Parity packed bits, originally a char[16][6], 16 hex words.
* \return 1 if irrecoverable errors have been detected, 0 otherwise.
*/
int decode(char* hex_data, const char* hex_parity)
{
int input[63];
int output[63];
// First put the parity data, 16 hex words
for(unsigned int i=0; i<16; i++) {
input[i] = bin_to_hex(hex_parity + i*6);
}
// Then the 20 hex words of data
for(unsigned int i=16; i<16+20; i++) {
input[i] = bin_to_hex(hex_data + (i-16)*6);
}
// Fill up with zeros to complete the 47 expected hex words of data
for(unsigned int i=16+20; i<63; i++) {
input[i] = 0;
}
// Now we can call decode on the base class
int irrecoverable_errors = ReedSolomon_63<8>::decode(input, output);
// Convert it back to binary and put it into hex_data. If decode failed we should have
// the input unchanged.
for(unsigned int i=16; i<16+20; i++) {
hex_to_bin(output[i], hex_data + (i-16)*6);
}
return irrecoverable_errors;
}
void encode(const char* hex_data, char* out_hex_parity)
{
int input[47];
int output[63];
// Put the 20 hex words of data
for(unsigned int i=0; i<20; i++) {
input[i] = bin_to_hex(hex_data + i*6);
}
// Fill up with zeros to complete the 47 expected hex words of data
for(unsigned int i=20; i<47; i++) {
input[i] = 0;
}
// Now we can call encode on the base class
ReedSolomon_63<8>::encode(input, output);
// Convert it back to binary form and put it into the parity
for(unsigned int i=0; i<16; i++) {
hex_to_bin(output[i], out_hex_parity + i*6);
}
}
};
/**
* Convenience class that does a Reed-Solomon (24,12,13) error correction adapting input and output to
* the DSD data format: hex words packed as char arrays.
*/
class DSDReedSolomon_24_12_13 : public ReedSolomon_63<6>
{
public:
// tt = (dd-1)/2
// dd = 13 --> tt = 6
DSDReedSolomon_24_12_13() : ReedSolomon_63<6>()
{
// Does nothing
}
/**
* Does a Reed-Solomon decode adapting the input and output to the expected DSD data format.
* \param hex_data Data packed bits, originally a char[12][6], so containing 12 hex works, each char
* is a bit. Bits are corrected in place.
* \param hex_parity Parity packed bits, originally a char[12][6], 12 hex words.
* \return 1 if irrecoverable errors have been detected, 0 otherwise.
*/
int decode(char* hex_data, const char* hex_parity)
{
int input[63];
int output[63];
// First put the parity data, 12 hex words
for(unsigned int i=0; i<12; i++) {
input[i] = bin_to_hex(hex_parity + i*6);
}
// Then the 12 hex words of data
for(unsigned int i=12; i<12+12; i++) {
input[i] = bin_to_hex(hex_data + (i-12)*6);
}
// Fill up with zeros to complete the 51 expected hex words of data
for(unsigned int i=12+12; i<63; i++) {
input[i] = 0;
}
// Now we can call decode on the base class
int irrecoverable_errors = ReedSolomon_63<6>::decode(input, output);
// Convert it back to binary and put it into hex_data. If decode failed we should have
// the input unchanged.
for(unsigned int i=12; i<12+12; i++) {
hex_to_bin(output[i], hex_data + (i-12)*6);
}
return irrecoverable_errors;
}
void encode(const char* hex_data, char* out_hex_parity)
{
int input[51];
int output[63];
// Put the 12 hex words of data
for(unsigned int i=0; i<12; i++) {
input[i] = bin_to_hex(hex_data + i*6);
}
// Fill up with zeros to complete the 51 expected hex words of data
for(unsigned int i=12; i<51; i++) {
input[i] = 0;
}
// Now we can call encode on the base class
ReedSolomon_63<6>::encode(input, output);
// Convert it back to binary form and put it into the parity
for(unsigned int i=0; i<12; i++) {
hex_to_bin(output[i], out_hex_parity + i*6);
}
}
};
/**
* Convenience class that does a Reed-Solomon (24,16,9) error correction adapting input and output to
* the DSD data format: hex words packed as char arrays.
*/
class DSDReedSolomon_24_16_9 : public ReedSolomon_63<4>
{
public:
// tt = (dd-1)/2
// dd = 9 --> tt = 4
DSDReedSolomon_24_16_9() : ReedSolomon_63<4>()
{
// Does nothing
}
/**
* Does a Reed-Solomon decode adapting the input and output to the expected DSD data format.
* \param hex_data Data packed bits, originally a char[16][6], so containing 16 hex works, each char
* is a bit. Bits are corrected in place.
* \param hex_parity Parity packed bits, originally a char[8][6], 8 hex words.
* \return 1 if irrecoverable errors have been detected, 0 otherwise.
*/
int decode(char* hex_data, const char* hex_parity)
{
int input[63];
int output[63];
// First put the parity data, 8 hex words
for(unsigned int i=0; i<8; i++) {
input[i] = bin_to_hex(hex_parity + i*6);
}
// Then the 16 hex words of data
for(unsigned int i=8; i<8+16; i++) {
input[i] = bin_to_hex(hex_data + (i-8)*6);
}
// Fill up with zeros to complete the 55 expected hex words of data
for(unsigned int i=8+16; i<63; i++) {
input[i] = 0;
}
// Now we can call decode on the base class
int irrecoverable_errors = ReedSolomon_63<4>::decode(input, output);
// Convert it back to binary and put it into hex_data. If decode failed we should have
// the input unchanged.
for(unsigned int i=8; i<8+16; i++) {
hex_to_bin(output[i], hex_data + (i-8)*6);
}
return irrecoverable_errors;
}
void encode(const char* hex_data, char* out_hex_parity)
{
int input[55];
int output[63];
// Put the 16 hex words of data
for(unsigned int i=0; i<16; i++) {
input[i] = bin_to_hex(hex_data + i*6);
}
// Fill up with zeros to complete the 55 expected hex words of data
for(unsigned int i=16; i<55; i++) {
input[i] = 0;
}
// Now we can call encode on the base class
ReedSolomon_63<4>::encode(input, output);
// Convert it back to binary form and put it into the parity
for(unsigned int i=0; i<8; i++) {
hex_to_bin(output[i], out_hex_parity + i*6);
}
}
};
#endif // REEDSOLOMON_HPP_b1405fdab6374ba2a4e65e8d45ec3d80