This repository has been archived by the owner on Apr 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
th_seminar.tex
948 lines (802 loc) · 24.1 KB
/
th_seminar.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
\documentclass[10pt]{beamer}
\usetheme{progressbar}
\usecolortheme{crane}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\support}{supp}
\DeclareMathOperator{\supremum}{sup}
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\lVert#1\right\rVert}
\providecommand{\ket}[1]{\left\vert#1\right\rangle}
\providecommand{\bra}[1]{\left\langle#1\right\vert}
\providecommand{\braket}[2]{\left\langle#1|#2\right\rangle}
\title{Review of Private Capacity of Quantum Channels}
\author{Mohammad Amin Solhizadeh}
\institute{Computer Science \\ Yazd University}
\date{Winter 2012}
\AtBeginSection{
\frame[allowbreak]{
\frametitle{Outline}
\tableofcontents[current]
}
}
\begin{document}
\frame{\titlepage}
\frame{
\frametitle{Outline}
\tableofcontents
}
\section{Quantum Computation Prerequisites}
\frame{
\frametitle{Definition}
\begin{block}{Hilbert Space ($\mathcal{H}$)}
An inner product space is called a \textbf{Hilbert Space} if it is complete with respect to
the norm $\norm{.}$
\end{block}
\begin{block}{Bounded Operator}
Operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is bounded, if
\[
\norm{Ax} \leq M \norm{x} \quad \exists M > 0 \quad \forall x \in \mathcal{H}
\]
Set of all bounded operators are shown by $\mathbf{B}(\mathcal{H})$
\end{block}
\begin{block}{Conjugate-Transpose}
For $A \in \mathbf{B}(\mathcal{H})$, there exists a unique operator $A^\dag \in \mathbf{B}(\mathcal{H})$
such that
\[
\braket{x}{Ay} = \braket{A^\dag x}{y} \quad \forall x, y \in \mathcal{H}
\]
$A^\dag$ is called the \textbf{Conjugate-Transpose} of $A$
\end{block}
}
\frame{
\frametitle{Definition (Cont.)}
\begin{block}{Operator Names}
\begin{itemize}
\item{
$A$ is a \textbf{Hermitian} operator $\Longleftrightarrow$ $A = A^\dag$
}
\item{
$A$ is a \textbf{Normal} operator $\Longleftrightarrow$ $A A^\dag = A^\dag A$
}
\item{
$A$ is a \textbf{Projector} operator $\Longleftrightarrow$ $A = A^\dag = A^2$
}
\item{
$A$ is a \textbf{Unitary} operator $\Longleftrightarrow$ $A A^\dag = A^\dag A = I$
}
\end{itemize}
\end{block}
}
\frame{
\frametitle{Noiseless Quantum Theory}
\begin{block}{Quantum Bits}
\begin{align*}
\ket{0} &=
\begin{bmatrix}
1 \\
0
\end{bmatrix}, &
\bra{0} &=
\begin{bmatrix}
1 & 0
\end{bmatrix} &
\quad \quad
\ket{+} &= \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 \\
1
\end{bmatrix}, &
\bra{+} &= \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1
\end{bmatrix} \\
%next line
\ket{1} &=
\begin{bmatrix}
0 \\
1
\end{bmatrix}, &
\bra{1} &=
\begin{bmatrix}
0 & 1
\end{bmatrix} &
\quad \quad
\ket{-} &= \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 \\
-1
\end{bmatrix}, &
\bra{-} &= \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & -1
\end{bmatrix}
\end{align*}
\end{block}
\begin{block}{Quantum Information Processing Protocol}
\begin{enumerate}
\item{
State Preparation
}
\item{
Quantum Operation
}
\item{
Measurement
}
\end{enumerate}
\end{block}
\begin{center}
\includegraphics[width=\textwidth]{images/quantum-information-process.png}
\end{center}
}
\frame{
\frametitle{Quantum Gates}
\begin{block}{Hadamard Gate}
\begin{columns}
\column{.5\textwidth}
\begin{align*}
H &\equiv \ket{+} \bra{0} + \ket{-} \bra{1} \\
&= \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\end{align*}
\column{.5\textwidth}
\begin{align*}
H \ket{0} &\longrightarrow \ket{+} \\
H \ket{1} &\longrightarrow \ket{-} \\
\end{align*}
\end{columns}
\end{block}
\begin{block}{Controlled Gate}
\textbf{Controlled-NOT (CNOT) Gate}
\[
\alpha \ket{00} + \beta \ket{01} + \gamma \ket{10} + \delta \ket{11}
\quad \underrightarrow{\text{CNOT}} \quad
\alpha \ket{00} + \beta \ket{01} + \gamma \ket{11} + \delta \ket{10}
\]
This gate is called \textbf{Controlled-U} gate, if we apply another Unitary operator
instead of NOT operator
\end{block}
}
\frame{
\frametitle{Cloning}
\begin{block}{No Cloning Theorem}
It is impossible to build a \textbf{Universal Copier}
of quantum states
\end{block}
\begin{corollary}
It is impossible to copy quantum informations, except in two following case:
\begin{enumerate}
\item{
Two states are the same ($\braket{\psi}{\phi} = 1$)
}
\item{
Two states are orthogonal ($\braket{\psi}{\phi} = 0$)
}
\end{enumerate}
\end{corollary}
}
\frame{
\frametitle{Entanglement}
\begin{block}{Finding Qubit State!}
Suppose Alice and Bob shared following two states:
\begin{align*}
\ket{0}^A \ket{1}^B \rightarrow
&\left\{
\begin{array}{lc}
\mbox{Alice Qubit State: } & \ket{0}^A \\
\mbox{Bob Qubit State: } & \ket{1}^B
\end{array}
\right.
\\
\ket{\Phi^+}^{AB} = \frac{\ket{0}^A \ket{0}^B + \ket{1}^A \ket{1}^B}{\sqrt{2}} \rightarrow
&\left\{
\begin{array}{lc}
\mbox{Alice Qubit State: } & ? \\
\mbox{Bob Qubit State: } & ?
\end{array}
\right.
\end{align*}
% The second state is called an \textbf{Entanglement} state
\end{block}
\begin{example}{Entanglement States (Bell States)}
\begin{align*}
\ket{\Phi^+}^{AB} &\equiv \frac{1}{\sqrt{2}} \left( \ket{00}^{AB} + \ket{11}^{AB} \right) & \quad
\ket{\Phi^-}^{AB} &\equiv \frac{1}{\sqrt{2}} \left( \ket{00}^{AB} - \ket{11}^{AB} \right) & \\
\ket{\Psi^+}^{AB} &\equiv \frac{1}{\sqrt{2}} \left( \ket{01}^{AB} + \ket{10}^{AB} \right) & \quad
\ket{\Psi^-}^{AB} &\equiv \frac{1}{\sqrt{2}} \left( \ket{01}^{AB} - \ket{10}^{AB} \right)
\end{align*}
\end{example}
}
\frame{
\frametitle{Noisy Quantum State}
\begin{block}{Density Operator}
Suppose we want to perform measurement $\left\{ \Pi_j \right\}$ on system
$\mathcal{E} = \left\{ p_X(x), \ket{\psi_x} \right\}_{x \in \mathcal{X}}$. If system is in
state $\ket{\psi_x}$, we have
\begin{align*}
p_{J|X}(j|x) &= \bra{\psi_x}\Pi_j\ket{\psi_x} \\
p_J(j) &= \sum_{x \in \mathcal{X}} p_{J|X}(j|x) p_X(x) \\
&= \sum_{x \in \mathcal{X}} \bra{\psi_x}\Pi_j\ket{\psi_x} p_X(x) \\
&= \Tr \left\{ \Pi_j \sum_{x \in \mathcal{X}} p_X(x) \ket{\psi_x} \bra{\psi_x} \right\} \\
&= \Tr \left\{ \Pi_j \rho \right\}
\end{align*}
$\rho = \sum_{x \in \mathcal{X}} p_X(x) \ket{\psi_x} \bra{\psi_x}$
is called \textbf{Density Operator}
\end{block}
}
\frame{
\frametitle{Properties}
\begin{block}{Properties of Density Operator}
\begin{enumerate}
\item{
$\Tr\{\rho\} = 1$
}
\item{
$\rho \geq 0 \quad \bra{\phi} \rho \ket{\phi} \geq 0 \quad \forall \ket{\phi} $
}
\item{
$\rho^\dag = \rho$
}
\end{enumerate}
\end{block}
\begin{alertblock}{Note}
Sate of a quantum system is in fact a density operator
\end{alertblock}
}
\frame{
\frametitle{Noisy Quantum Measurement}
\begin{block}{Measurement}
The most general quantum measurement, consists of a set of measurement operators
$\left\{ M_j \right\}_j$, where $\sum_j M_j^\dag M_j = I$.
The probability for obtaining outcome $j$ on quantum state $\rho$ is
\[
p(j) = \Tr \left\{ M_j^\dag M_j \rho \right\}
\]
\end{block}
\begin{block}{Positive Operator-Valued Measurement (POVM)}
\textbf{POVM} is a set of measurement operators $\left\{ \Lambda_j \right\}_j$,
that satisfies following conditions:
\begin{enumerate}
\item{
$\Lambda_j \geq 0$
}
\item{
$\sum_j \Lambda_j = I$
}
\end{enumerate}
The probability of outcome $j$ for some density operator $\rho$ is: $\Tr\left\{ \Lambda_j \rho \right\}$
\end{block}
}
\frame{
\frametitle{Ensemble of an Ensemble}
\begin{block}{Classical-Quantum Ensemble}
\textbf{Problem:} If Alice prepares following ensemble
\[
\left\{ p_X(x), \rho_x \right\}_{x \in \mathcal{X}}, \quad \rho = \sum_{x \in \mathcal{X}} p_X(x) \rho_x
\]
Bob can't learn about random variable $X$, because there is loss of information in the random variable $X$
\textbf{Solution:}
\[
\left\{ p_X(x), \ket{x}\bra{x}^X \otimes \rho_x^A \right\}_{x \in \mathcal{X}}, \quad
\rho^{XA} = \sum_{x \in \mathcal{X}} p_X(x) \ket{x} \bra{x}^X \otimes \rho_x^A
\]
\end{block}
}
\frame{
\frametitle{Purified State}
\begin{block}{Purification}
Suppose we are given density operator $\rho^A = \sum_x p_X(x) \ket{x} \bra{x}^A$
Purification of $\rho^A$ is
\[
\ket{\psi}^{RA} = \sum_x \sqrt{p_X(x)} \ket{x}^R \ket{x}^A
\]
where
\[
\rho^A = \Tr_R \left\{ \ket{\psi} \bra{\psi}^{RA} \right\}
\]
\end{block}
}
\section{Quantum Information Theory}
\frame{
\frametitle{Quantum Entropies}
\begin{block}{Von Neumann Entropy}
\begin{align*}
H(\rho) &= - \Tr (\rho \log \rho) \\
&= - \sum_x \lambda_x \log \lambda_x
\end{align*}
\end{block}
\begin{block}{Quantum Joint Entropy}
\[
H(AB) = - \Tr \left( \rho^{AB} \log \rho^{AB} \right)
\]
\end{block}
\begin{block}{Quantum Conditional Entropy}
\[
H(A|B) = H(AB) - H(B)
\]
\end{block}
}
\frame{
\frametitle{Properties}
\begin{block}{Properties of Von Neumann Entropy}
\begin{enumerate}
\item{
$H(\rho) \geq 0$
}
\item{
$H(\rho) \leq \log d$ (in $d$-dimensional Hilbert space)
}
\item{
For a \textbf{pure} composite system like $AB$: $H(A) = H(B)$
}
\item{
$H \left( \sum_i p_i \rho_i \right) = H(p_i) + \sum_i p_i H(\rho_i)$
}
\item{
(\textbf{Joint Entropy Theorem})
$H \left( \sum_i p_i |i\rangle \langle i| \otimes \rho_i \right) = H(p_i) + \sum_i p_i H(\rho_i)$
}
\end{enumerate}
\end{block}
}
\frame{
\frametitle{Quantum Informations}
\begin{block}{Quantum Mutual Information}
\begin{align*}
I(A; B) &\equiv H(A) + H(B) - H(AB) \\
&= H(A) - H(A | B) \\
&= H(B) - H(B | A)
\end{align*}
\end{block}
\begin{block}{Conditional Quantum Mutual Information}
\[
I(A; B | C)_\rho \equiv H(A | C)_\rho + H(B | C)_\rho - H(AB | C)_\rho
\]
\end{block}
\begin{block}{Coherent Information}
\[
I(A\rangle B) = H(B) - H(AB)
\]
\end{block}
}
\frame{
\frametitle{Von Neumann Entropy}
\begin{block}{Additivity}
\[
H(\rho \otimes \sigma) = H(\rho) + H(\sigma)
\]
\end{block}
\begin{block}{Subadditivity \& Triangle Inequality}
\begin{align*}
H(\rho^{AB}) &\leq H(\rho^{A}) + H(\rho^{B}) &\mbox{Subadditivity Inequality}\\
H(\rho^{AB}) &\geq \abs{H(\rho^{A}) - H(\rho^{B})} &\mbox{Triangle Inequality}
\end{align*}
\end{block}
\begin{block}{Concavity of Von Neumann Entropy}
\[
H \left( \sum_i p_i \rho_i \right) \geq \sum_i p_i H(\rho_i)
\]
\end{block}
}
\section{Quantum Channels}
\frame{
\frametitle{Classical Channel}
\begin{block}{Communication System}
\begin{center}
\includegraphics[width=\textwidth]{images/communication-system.png}
\end{center}
\end{block}
}
\frame{
\frametitle{Random Operator}
\begin{block}{Random Unitary Operator}
By applying ensemble of unitaries, $\left\{ p(k), U_k \right\}_{k \in \mathcal{K}}$ to
an ensemble of state, $\left\{ p_X(x), \ket{\psi_x} \right\}_{x \in \mathcal{X}}$,
we obtain following density operator
\[
\sum_{k \in \mathcal{K}} p(k) U_k \rho U_k^\dag
\]
where
\[
\rho = \sum_{x \in \mathcal{X}} p_X(x) \ket{\psi_x} \bra{\psi_x}
\]
\end{block}
}
\frame{
\frametitle{Noisy Evolution}
\begin{block}{Quantum Channel}
\textbf{Ensemble of states:} $\left\{ p_X(x), \ket{\psi_x} \right\}$
\textbf{Measurement operators:} $\{ M_k \}$ where $\sum_k M_k^\dag M_k = I$
\begin{itemize}
\item{
Probability of outcome $k$ where state is $\ket{\psi_x}$:
\begin{center}
$p_{K|X}(k|x) = \bra{\psi_x} M_k^\dag M_k \ket{\psi_x}$
\end{center}
}
\item{
If we loss track of measurement outcome, for resulting ensemble description we have
\[
\left\{ p_{X \vert K}(x \vert k) p_K(k), \frac{M_k \ket{\psi_x}}{\sqrt{p_{K \vert X}(k \vert x)}} \right\}
\]
and its density operator is
\[
\sum_{x, k} p_{X \vert K}(x \vert k) p_K(k) \frac{M_k \ket{\psi_x} \bra{\psi_x} M_k^\dag}{p_{K \vert X}(k \vert x)}
= \sum_k M_k \rho M_k^\dag
\]
}
\end{itemize}
\end{block}
}
\frame{
\frametitle{Noisy Evolution (Cont.)}
\begin{block}{Result}
We can summarize the whole operations as a noisy map:
\[
\mathcal{N}(\rho) = \sum_k M_k \rho M_k^\dag
\]
\end{block}
\vspace*{10pt}
\begin{center}
\includegraphics[width=\textwidth]{images/noisy-quantum-channel.png}
\end{center}
}
\frame{
\frametitle{Examples of Noisy Quantum Channels}
\begin{block}{Depolarizing Channel}
\[
\rho \longrightarrow (1 - p) \rho + p \pi
\]
\end{block}
\begin{block}{Erasure Channel}
\[
\rho \longrightarrow (1 - \varepsilon) \rho + \varepsilon \ket{e} \bra{e}
\]
\end{block}
}
%\frame{
% \frametitle{Examples of Noisy Quantum Channels (Cont.)}
%
% \begin{block}{Classical-Quantum (Entanglement-Breaking) Channel}
% \textbf{Channel input:} Density operator $\rho$ which acts on orthonormal basis $\{ \ket{k} \}_k$
%
% \textbf{Process:}
% \begin{enumerate}
% \item{
% Performs measurement in basis $\ket{k}$ $\rightarrow$ Post measurement state:
% \[
% \frac{\ket{k} \bra{k} \rho \ket{k} \bra{k}}{\bra{k} \rho \ket{k}}
% \]
% }
%
% \item{
% Correlates a density operator $\sigma_k$ with the post measurement state. That leads to
% following ensemble and density operator
% \[
% \left\{ \bra{k} \rho \ket{k}, \frac{\ket{k} \bra{k} \rho \ket{k} \bra{k}}{\bra{k} \rho \ket{k}}
% \otimes \sigma_k \right\}
% \]
% \[
% \sum_k \ket{k} \bra{k} \rho \ket{k} \bra{k} \otimes \sigma_k
% \]
% }
% \end{enumerate}
% \end{block}
%}
%
%\frame{
% \frametitle{Examples of Noisy Quantum Channels (Cont.)}
%
% \begin{block}{Classical-Quantum (Entanglement-Breaking) Channel (Cont.)}
% Then channel outputs the second system
% \[
% \mathcal{N}(\rho) = \sum_k \bra{k} \rho \ket{k} \sigma_k
% \]
% \end{block}
%
% \vspace*{10pt}
%
% \begin{center}
% \includegraphics[width=.6\textwidth]{images/classical-quantum-channel.png}
% \end{center}
%}
\frame{
\frametitle{Data Processing}
\begin{block}{Quantum Data Processing Inequality}
Suppose Alice and Bob share state $\ket{\phi}^{AB}$, then
\[
I(A \rangle B)_\phi \geq I(A \rangle B_1)_\rho \geq I(A \rangle B_2)_\sigma
\]
where
\begin{align*}
\rho^{AB_1} &\equiv \mathcal{N}_1^{B \rightarrow B_1}\left(\phi^{AB}\right) \\
\sigma^{AB_2} &\equiv \mathcal{N}_2^{B_1 \rightarrow B_2}\left(\rho^{AB_1}\right)
\end{align*}
\end{block}
\begin{center}
\includegraphics[width=.6\textwidth]{images/quantum-data-processing.png}
\end{center}
}
\frame{
\frametitle{Quantum Channel Informations}
\begin{block}{Holevo Information of Quantum Channel}
\[
\chi (\mathcal{N}) \equiv \max_{\rho^{XA^\prime}} I(X; B)_\rho
\]
where
\begin{align*}
\rho^{XA^\prime} &\equiv \sum_x p_X(x) \ket{x} \bra{x}^X \otimes \rho_x^{A^\prime} \\
\rho^{XB} &\equiv \sum_x p_X(x) \ket{x} \bra{x}^X \otimes \mathcal{N}^{A^\prime \rightarrow B} \left( \rho_x^{A^\prime} \right)
\end{align*}
\end{block}
}
\frame{
\frametitle{Quantum Channel Informations (Cont.)}
\begin{block}{Additivity of Holevo Information}
\[
\chi \left(\mathcal{N}_1 \otimes \mathcal{N}_2 \right) = \chi \left(\mathcal{N}_1 \right) + \chi \left( \mathcal{N}_2 \right)
\]
where $\mathcal{N}_1$ and $\mathcal{N}_2$ are \textbf{Entanglement-Breaking} channels
\end{block}
\begin{center}
\includegraphics[width=.3\textwidth]{images/additivity-holevo-figure.png}
\end{center}
}
\frame{
\frametitle{Quantum Channel Informations (Cont.)}
\begin{block}{Mutual Information of Quantum Channel}
\[
I(\mathcal{N}) \equiv \max_{\phi^{AA^\prime}} I(A; B)_{\rho^{AB}}
\]
where
\[
\rho^{AB} = \mathcal{N}^{A^\prime \rightarrow B} (\phi^{AA^\prime})
\]
\end{block}
\begin{block}{Additivity of Mutual Information}
\[
I \left(\mathcal{N}_1 \otimes \mathcal{N}_2 \right) = I \left(\mathcal{N}_1 \right) + I \left( \mathcal{N}_2 \right)
\]
\end{block}
}
\frame{
\frametitle{Quantum Channel Informations (Cont.)}
\begin{block}{Coherent Information of Quantum Channel}
\[
Q(\mathcal{N}) \equiv \max_{\phi^{AA^\prime}} I(A\rangle B)_\rho
\]
where
\[
\rho^{AB} = \mathcal{N}^{A^\prime \rightarrow B} (\phi^{AA^\prime})
\]
\end{block}
\begin{block}{Additivity of Coherent Information}
\[
Q(\mathcal{N}_1 \otimes \mathcal{N}_2) = Q(\mathcal{N}_1) + Q(\mathcal{N}_2)
\]
where $\mathcal{N}_1$ and $\mathcal{N}_2$ are \textbf{Degradable} channels
\end{block}
}
\frame{
\frametitle{Quantum Channel Informations (Cont.)}
\begin{block}{Private Information of Quantum Channel}
\[
P(\mathcal{N}) \equiv \max_{\rho^{XA^\prime}} \left\{ I(X; B)_\rho - I(X; E)_\rho \right\}
\]
where
\begin{align*}
\rho^{XA^\prime} &= \sum_x p_X(x) \ket{x} \bra{x}^X \otimes \rho_x^{A^\prime} \\
\rho^{XBE} &= \sum_x p_X(x) \ket{x} \bra{x}^X \otimes U_{\mathcal{N}}^{A^\prime \rightarrow BE} \left( \rho_x^{A^\prime} \right)
\end{align*}
\end{block}
\begin{block}{Private and Coherent Information of Quantum Channel Relation}
\[
Q(\mathcal{N}) \leq P(\mathcal{N})
\]
\end{block}
}
\frame{
\frametitle{Quantum Channel Informations (Cont.)}
\begin{block}{Additivity of Private Information}
\[
P \left(\mathcal{N}_1 \otimes \mathcal{N}_2 \right) = P \left(\mathcal{N}_1 \right) + P \left( \mathcal{N}_2 \right)
\]
where $\mathcal{N}_1$ and $\mathcal{N}_2$ are \textbf{Degradable} channels
\end{block}
\begin{center}
\includegraphics[width=.3\textwidth]{images/additivity-private.png}
\end{center}
}
\section{Channel Capacity and Additivity Violation}
\frame{
\frametitle{Classical Channel}
\begin{block}{Capacity of Classical Channel}
\[
C(\mathcal{N}) = \max_X I(X; Y)
\]
\end{block}
\begin{block}{Additivity of Classical Channel}
\[
C \left(\mathcal{N}_1 \otimes \mathcal{N}_2 \right) = C \left(\mathcal{N}_1 \right) + C \left( \mathcal{N}_2 \right)
\]
\end{block}
}
\frame{
\frametitle{Overview of Quantum Channel}
\begin{center}
\includegraphics[width=\textwidth]{images/quantum-channel-representation.png}
\end{center}
}
\frame{
\frametitle{Quantum Channel Capacities}
\begin{block}{Quantum Capacity of Quantum Channel}
\[
Q(\mathcal{N}) = \lim_{n \rightarrow \infty} \frac{1}{n} Q^{(1)} \left(\mathcal{N}^{\otimes n}\right)
\]
where
\[
Q^{(1)} = \max_{\rho^A} \left(H(B) - H(E)\right)
\]
\end{block}
\begin{center}
\includegraphics[width=.75\textwidth]{images/quantum-channel-quantum-capacity.png}
\end{center}
}
\frame{
\frametitle{Quantum Channel Capacities (Cont.)}
\begin{block}{Private Capacity of Quantum Channel}
\[
P(\mathcal{N}) = \lim_{n \rightarrow \infty} \frac{1}{n} P^{(1)} \left(\mathcal{N}^{\otimes n}\right)
\]
where
\[
P^{(1)} = \max_{X, \rho_x^A} \left(I(X; B) - I(X; E)\right)
\]
\end{block}
}
\frame{
\frametitle{Private Capacity of Quantum Channel is not Additive}
\begin{block}{Introduction}
A quantum channel $\mathcal{N}$ is described by an isometric map $V: A \rightarrow BE$,
\[
\mathcal{N}(\rho) = \Tr_E\left(V \rho V^\dag\right), \quad \quad
\widetilde{\mathcal{N}}(\rho) = \Tr_B\left(V \rho V^\dag\right)
\]
\end{block}
\begin{block}{Quantum Channel Capacities Relation}
\[
C(\mathcal{N}) \geq P(\mathcal{N}) \geq Q(\mathcal{N})
\]
where
\begin{align*}
\chi (\mathcal{N}) &\leq C(\mathcal{N})
= \lim_{n \rightarrow \infty} \frac{1}{n} \chi \left( \mathcal{N}^{\otimes n} \right)\\
P^{(1)}(\mathcal{N}) &\leq P(\mathcal{N})
= \lim_{n \rightarrow \infty} \frac{1}{n} P^{(1)} \left( \mathcal{N}^{\otimes n} \right)\\
Q^{(1)} (\mathcal{N}) &\leq Q(\mathcal{N})
= \lim_{n \rightarrow \infty} \frac{1}{n} Q^{(1)} \left( \mathcal{N}^{\otimes n} \right)
\end{align*}
\end{block}
}
\frame{
\frametitle{Channel Construction ($\mathcal{T}_{\mathcal{N}}^k$)}
\begin{center}
\includegraphics[width=.75\textwidth]{images/constructed-channel.png}
\end{center}
}
\frame{
\frametitle{Private Capacity of Quantum Channel is not Additive (Cont.)}
\begin{theorem}
For any channel $\mathcal{N}$ with input space $A$, output space $B$ and
environment $E$ and any integer $k$, let
$\delta(k) = \frac{1}{k} \left( 5 + 4 \log \abs{E} \right)$, then for arbitrary channel
$\mathcal{E}$,
\[
\chi(\mathcal{N} \otimes \mathcal{E}) \leq \chi \left( \mathcal{T}_\mathcal{N}^k \otimes \mathcal{E} \right)
\leq \chi (\mathcal{N} \otimes \mathcal{E}) + \delta(k)
\]
As a consequence
\[
C(\mathcal{N}) \leq C\left(\mathcal{T}_\mathcal{N}^k\right) \leq C(\mathcal{N}) + \delta(k)
\]
\end{theorem}
}
\frame{
\frametitle{Private Capacity of Quantum Channel is not Additive (Cont.)}
\begin{block}{Additivity Violation}
If Alice prepare a maximally entangled state $\Phi$ and another arbitrary state $\rho$,
then feeds them to channel $\mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}$,
where $\mathcal{A}$ is 50\% erasure channel, we have
\[
P\left(\mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}\right) \geq
Q\left(\mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}\right) \geq
Q_E(\mathcal{N})
\]
where
\begin{align*}
Q_E(\mathcal{N}) &= \max_\rho I_c\left(\Phi \otimes \rho, \mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}\right) \\
Q_E(\mathcal{N}) &> C(\mathcal{N})
\end{align*}
So for sufficiently larg $k$,
\[
P\left(\mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}\right) \geq
Q\left(\mathcal{T}_\mathcal{N}^k \otimes \mathcal{A}\right) >
P\left(\mathcal{T}_\mathcal{N}^k\right) \geq
Q\left(\mathcal{T}_\mathcal{N}^k\right)
\]
\end{block}
}
\frame{
\frametitle{Private Capacity of Quantum Channel is not Additive (Cont.)}
\begin{block}{Conclusion}
We showed a way of converting any gap between channel classical capacity and
entanglement-assisted capacity into the violation of the additivity of the private
capacity of the channel tensored with 50\% erasure channel
\end{block}
}
\frame{
\frametitle{References}
\begin{thebibliography}{1}
\bibitem{ref1}[Quantum Computation and Quantum Information]
\newblock Nielsen, Michael A. and Isaac, L. Chuang
\newblock Cambridge University Press (September 2000)
\end{thebibliography}
\begin{thebibliography}{2}
\bibitem{ref2}[From Classical to Quantum Shanon Theory]
\newblock Mark M. Wilde
\newblock School of Computer Science McGill University (June 2011)
\end{thebibliography}
\begin{thebibliography}{3}
\bibitem{ref3}[Private Capacity of Quantum Channels is Not Additive]
\newblock K. Li, A. Winter, X. Zou, GC. Guo
\newblock Phys. Rev. Lett. 103:120501 (2009)
\end{thebibliography}
\begin{thebibliography}{4}
\bibitem{ref4}[Quantum Communication With Zero-Capacity Channels]
\newblock G. Smith, J. Yard
\newblock Science 321:1812 (2008)
\end{thebibliography}
\begin{thebibliography}{5}
\bibitem{ref5}[The Capacity of the Quantum Channel With General Signal States]
\newblock A. S. Holevo
\newblock IEEE Trans. Info. Theory 44:269 (1998)
\end{thebibliography}
}
\frame{
\frametitle{References (Cont.)}
\begin{thebibliography}{6}
\bibitem{ref6}[Sending Classical Information via Noisy Quantum Channels]
\newblock B. Schumacher, M. D. Westmorland
\newblock Phys. Rev. A 56:131 (1997)
\end{thebibliography}
\begin{thebibliography}{7}
\bibitem{ref7}[The Private Classical Capacity and Quantum Capacity of a Quantum Channel]
\newblock I. Devetak
\newblock IEEE Trans. Info. Theory 51:44 (2005)
\end{thebibliography}
\begin{thebibliography}{8}
\bibitem{ref8}[The Capacity of the Noisy Quantum Channel]
\newblock S. Lloyd
\newblock Phys. Rev. A 55:1613 (1997)
\end{thebibliography}
\begin{thebibliography}{9}
\bibitem{ref9}[Quantum Error Correction]
\newblock P. W. Shor
\newblock http://www.msri.org/publications/ln/msri/2002/quantum crypto/shor/1/
\end{thebibliography}
}
\frame{
\begin{center}
\textbf{\Large{\color{gray}Thanks for your attention}}
\end{center}
\vspace*{30pt}
\begin{flushright}
\small{\textbf{``I think I can safely say that nobody understands quantum mechanics''}}
\tiny{\textit{Nobel-prize winning physicist} \textbf{Richard Feynman}}
\end{flushright}
}
\end{document}