You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "/mnt/downloads/github_src/ssd_detectors/SSD_predict.py", line 40, in
prior_util = PriorUtil(model)
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 353, in init
self.update_priors()
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 375, in update_priors
m.compute_priors()
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 193, in compute_priors
linx = np.array([(0.5 + i) for i in range(map_w)]) * step_x
TypeError: 'NoneType' object cannot be interpreted as an integer
Traceback (most recent call last):
File "/mnt/downloads/github_src/ssd_detectors/SL_end2end_predict.py", line 41, in
prior_util = PriorUtil(model)
File "/mnt/downloads/github_src/ssd_detectors/sl_utils.py", line 45, in init
if i > 0 and np.all(np.array(previous_map_size) != np.array(map_size)*2):
TypeError: unsupported operand type(s) for *: 'NoneType' and 'int'
when use set2
SSD_predict and SL_predict
it works well.
You can ignore this message. We do not need a extra layer for padding :)
The master branch is up to date for TF 2.x. I'm not sure, 2.0.0-beta1 may be too low. You could try to update to 2.2, what could be painful on Stretch. The tf1 branch should run with TF 1.15 and Keras, not TF-Keras. You can ignore the tf2 branch.
You can ignore this message. We do not need a extra layer for padding :)
The master branch is up to date for TF 2.x. I'm not sure, 2.0.0-beta1 may be too low. You could try to update to 2.2, what could be painful on Stretch. The tf1 branch should run with TF 1.15 and Keras, not TF-Keras. You can ignore the tf2 branch.
environment set1: (use tf2, follow the environment.ipynb)
OS debian stretch/sid
Python 3.7.4
NumPy 1.17.2
Pandas 1.0.4
Matplotlib 3.2.1
OpenCV 3.4.3
TensorFlow 2.0.0-beta1
Keras 2.2.4-tf
tqdm 4.46.1
imageio 2.6.1
environment set2:
OS debian stretch/sid
Python 3.7.5
NumPy 1.18.0
Pandas 0.25.3
Matplotlib 3.2.1
OpenCV 3.4.3
TensorFlow 1.15.0
Keras 2.2.4-tf
tqdm 4.41.1
imageio 2.8.0
when use set1:
it run wrong in PriorUtil:
Traceback (most recent call last):
File "/mnt/downloads/github_src/ssd_detectors/SSD_predict.py", line 40, in
prior_util = PriorUtil(model)
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 353, in init
self.update_priors()
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 375, in update_priors
m.compute_priors()
File "/mnt/downloads/github_src/ssd_detectors/ssd_utils.py", line 193, in compute_priors
linx = np.array([(0.5 + i) for i in range(map_w)]) * step_x
TypeError: 'NoneType' object cannot be interpreted as an integer
Traceback (most recent call last):
File "/mnt/downloads/github_src/ssd_detectors/SL_end2end_predict.py", line 41, in
prior_util = PriorUtil(model)
File "/mnt/downloads/github_src/ssd_detectors/sl_utils.py", line 45, in init
if i > 0 and np.all(np.array(previous_map_size) != np.array(map_size)*2):
TypeError: unsupported operand type(s) for *: 'NoneType' and 'int'
when use set2
SSD_predict and SL_predict
it works well.
but alse print that:
layer missing zero_padding2d_5
file []
what is wrong...
when use set2 run
layer missing reshape_1
file []
something went wrong bidirectional_1
model [[512, 1024], [256, 1024], [1024], [512, 1024], [256, 1024], [1024]]
file [(512, 768), (256, 768), (768,), (512, 768), (256, 768), (768,)]
Layer weight shape (512, 1024) not compatible with provided weight shape (512, 768)
layer missing bidirectional_2
file [(512, 768), (256, 768), (768,), (512, 768), (256, 768), (768,)]
layer missing label_input
file []
layer missing input_length
file []
layer missing label_length
file []
layer missing ctc
file []
Traceback (most recent call last):
File "/mnt/downloads/github_src/ssd_detectors/SL_end2end_predict.py", line 152, in
res_crnn = crnn_model.predict(words)
File "/home/hyj/anaconda3/envs/py37tf15/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 908, in predict
use_multiprocessing=use_multiprocessing)
File "/home/hyj/anaconda3/envs/py37tf15/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_arrays.py", line 723, in predict
callbacks=callbacks)
File "/home/hyj/anaconda3/envs/py37tf15/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_arrays.py", line 394, in model_iteration
batch_outs = f(ins_batch)
File "/home/hyj/anaconda3/envs/py37tf15/lib/python3.7/site-packages/tensorflow_core/python/keras/backend.py", line 3476, in call
run_metadata=self.run_metadata)
File "/home/hyj/anaconda3/envs/py37tf15/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1472, in call
run_metadata_ptr)
tensorflow.python.framework.errors_impl.InternalError: 2 root error(s) found.
(0) Internal: Blas GEMM launch failed : a.shape=(3, 512), b.shape=(512, 256), m=3, n=256, k=512
[[{{node bidirectional/forward_lstm_1/while/MatMul}}]]
[[softmax/truediv/_209]]
(1) Internal: Blas GEMM launch failed : a.shape=(3, 512), b.shape=(512, 256), m=3, n=256, k=512
[[{{node bidirectional/forward_lstm_1/while/MatMul}}]]
0 successful operations.
0 derived errors ignored.
thank you !
The text was updated successfully, but these errors were encountered: