-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathplot_utils.py
169 lines (139 loc) · 6.05 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
def plot_feature_statistic(models, x):
if type(models) not in [list, tuple]:
models = [models]
plt.figure(figsize=(16,4))
for i, model in enumerate(models):
m = Model(model.input, [l.output for l in model.layers])
y = m(x)
mean = [np.mean(a) for a in y]
std = [np.std(a) for a in y]
var = [np.var(a) for a in y]
names = ['%s\n%s'%(l.name,l.output_shape[1:]) for l in model.layers]
n = np.arange(len(names)) + i*0.1
plt.errorbar(n, mean, yerr=std,
marker='x', linestyle='None', capsize=5, elinewidth=1,
markeredgewidth=1, markersize=8, label=model.name)
if len(models) == 1:
plt.xticks(n, names, rotation=25)
plt.hlines(0, [-0.2], [len(n)-1+len(models)*0.1+0.2], 'k', linestyles='--', linewidth=1, alpha=0.5)
plt.grid(); plt.legend(); plt.title('activation mean and std')
plt.show()
def plot_feature_statistic_with_mask(models, xm):
if type(models) not in [list, tuple]:
models = [models]
plt.figure(figsize=(16,4))
for i, model in enumerate(models):
conv_layers = [l for l in model.layers if l.__class__.__name__.find('Conv2D') != -1]
outputs = [model.inputs] + [l.output for l in conv_layers]
xms = Model(model.input, outputs)(xm)
features, masks = zip(*xms)
weighted_features = [x*m for x, m in xms]
y = features
y = weighted_features
#y = masks
mean = [np.mean(a) for a in y]
std = [np.std(a) for a in y]
var = [np.var(a) for a in y]
layer_names = ['input'] + [l.name for l in conv_layers]
names = ['%s\n%s'%(n, o[0].shape[1:]) for n, o in zip(layer_names, outputs)]
n = np.arange(len(names)) + i*0.1
plt.errorbar(n, mean, yerr=std,
marker='x', linestyle='None', capsize=5, elinewidth=1,
markeredgewidth=1, markersize=8, label=model.name)
if len(models) == 1:
plt.xticks(n, names, rotation=25)
plt.hlines(0, [-0.2], [len(n)-1+len(models)*0.1+0.2], 'k', linestyles='--', linewidth=1, alpha=0.5)
plt.grid(); plt.legend(); plt.title('activation mean and std')
plt.show()
def plot_feature_activation(models, x, same_vminmax=True):
"""
# Arguments
models: list of keras models with layes
Input
Conv2D or similar
Conv2D or similar
Conv2D or similar
...
x: input data
# Plot of layer output
features
features * mask
mask
"""
if type(models) not in [list, tuple]:
models = [models]
def calc_min_max(features):
# TODO: mean and std?
vmin_each, vmax_each = [np.min(a) for a in features], [np.max(a) for a in features]
vmin, vmax = np.min(vmin_each), np.max(vmax_each)
return vmin, vmax, vmin_each, vmax_each
for i, model in enumerate(models):
m = Model(model.input, [l.output for l in model.layers])
y = m(x)
vmin, vmax, vmin_each, vmax_each = calc_min_max(y)
print('%-20s %10.3f %10.3f '% (model.name, vmin, vmax))
plt.figure(figsize=(17, 2))
for j in range(min(len(y), 8)):
plt.subplot(181+j)
if same_vminmax:
plt.imshow(y[j][0,...,0], vmin=vmin, vmax=vmax)
else:
plt.imshow(y[j][0,...,0], vmin=vmin_each[j], vmax=vmax_each[j])
plt.title('%.3f %.3f'%(vmin_each[j], vmax_each[j]))
plt.show()
def plot_feature_activation_with_masks(models, xm, same_vminmax=True):
"""
# Arguments
models: list of keras models with layes
Input for features
Input for mask
PartialConv2D or similar
PartialConv2D or similar
PartialConv2D or similar
...
xm: input data, list [features, mask]
# Plot of layer output
features
features * mask
mask
"""
if type(models) not in [list, tuple]:
models = [models]
def calc_min_max(features):
vmin_each, vmax_each = [np.min(a) for a in features], [np.max(a) for a in features]
vmin, vmax = np.min(vmin_each), np.max(vmax_each)
return vmin, vmax, vmin_each, vmax_each
for i, model in enumerate(models):
conv_layers = [l for l in model.layers if l.__class__.__name__.find('Conv2D') != -1]
outputs = [model.inputs] + [l.output for l in conv_layers]
xms = Model(model.input, outputs)(xm)
features, masks = zip(*xms)
weighted_features = [x*m for x, m in xms]
min_max_x = calc_min_max(features)
min_max_m = calc_min_max(masks)
min_max_xm = calc_min_max(weighted_features)
print('%-20s x: %10.3f %10.3f xm: %10.3f %10.3f m: %10.3f %10.3f' %
(model.name, min_max_x[0], min_max_x[1], min_max_xm[0], min_max_xm[1], min_max_m[0], min_max_m[1]))
plt.figure(figsize=(17, 2))
for j in range(min(len(features), 8)):
plt.subplot(181+j); plt.imshow(features[j][0,...,0], vmin=min_max_x[0], vmax=min_max_x[1])
plt.title('%.3f %.3f'%(min_max_x[2][j], min_max_x[3][j]))
plt.show()
plt.figure(figsize=(17, 2))
for j in range(min(len(masks), 8)):
plt.subplot(181+j)
if same_vminmax:
plt.imshow(weighted_features[j][0,...,0], vmin=min_max_xm[0], vmax=min_max_xm[1])
else:
plt.imshow(weighted_features[j][0,...,0], vmin=min_max_xm[2][j], vmax=min_max_xm[3][j])
plt.title('%.3f %.3f'%(min_max_xm[2][j], min_max_xm[3][j]))
plt.show()
plt.figure(figsize=(17, 2))
for j in range(min(len(masks), 8)):
plt.subplot(181+j)
plt.imshow(masks[j][0,...,0], vmin=0, vmax=1, cmap='gray')
plt.title('%.3f %.3f'%(min_max_m[2][j], min_max_m[3][j]))
plt.show()