-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathDGCNN_embedding.py
142 lines (117 loc) · 5.92 KB
/
DGCNN_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import print_function
import os
import sys
import numpy as np
import torch
import random
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import pdb
sys.path.append('%s/lib' % os.path.dirname(os.path.realpath(__file__)))
from gnn_lib import GNNLIB
from pytorch_util import weights_init, gnn_spmm
class DGCNN(nn.Module):
def __init__(self, output_dim, num_node_feats, num_edge_feats, latent_dim=[32, 32, 32, 1], k=30, conv1d_channels=[16, 32], conv1d_kws=[0, 5], conv1d_activation='ReLU'):
print('Initializing DGCNN')
super(DGCNN, self).__init__()
self.latent_dim = latent_dim
self.output_dim = output_dim
self.num_node_feats = num_node_feats
self.num_edge_feats = num_edge_feats
self.k = k
self.total_latent_dim = sum(latent_dim)
conv1d_kws[0] = self.total_latent_dim
self.conv_params = nn.ModuleList()
self.conv_params.append(nn.Linear(num_node_feats + num_edge_feats, latent_dim[0]))
for i in range(1, len(latent_dim)):
self.conv_params.append(nn.Linear(latent_dim[i-1], latent_dim[i]))
self.conv1d_params1 = nn.Conv1d(1, conv1d_channels[0], conv1d_kws[0], conv1d_kws[0])
self.maxpool1d = nn.MaxPool1d(2, 2)
self.conv1d_params2 = nn.Conv1d(conv1d_channels[0], conv1d_channels[1], conv1d_kws[1], 1)
dense_dim = int((k - 2) / 2 + 1)
self.dense_dim = (dense_dim - conv1d_kws[1] + 1) * conv1d_channels[1]
#if num_edge_feats > 0:
# self.w_e2l = nn.Linear(num_edge_feats, num_node_feats)
if output_dim > 0:
self.out_params = nn.Linear(self.dense_dim, output_dim)
self.conv1d_activation = eval('nn.{}()'.format(conv1d_activation))
weights_init(self)
def forward(self, graph_list, node_feat, edge_feat):
graph_sizes = [graph_list[i].num_nodes for i in range(len(graph_list))]
node_degs = [torch.Tensor(graph_list[i].degs) + 1 for i in range(len(graph_list))]
node_degs = torch.cat(node_degs).unsqueeze(1)
n2n_sp, e2n_sp, subg_sp = GNNLIB.PrepareSparseMatrices(graph_list)
if torch.cuda.is_available() and isinstance(node_feat, torch.cuda.FloatTensor):
n2n_sp = n2n_sp.cuda()
e2n_sp = e2n_sp.cuda()
subg_sp = subg_sp.cuda()
node_degs = node_degs.cuda()
node_feat = Variable(node_feat)
if edge_feat is not None:
edge_feat = Variable(edge_feat)
if torch.cuda.is_available() and isinstance(node_feat, torch.cuda.FloatTensor):
edge_feat = edge_feat.cuda()
n2n_sp = Variable(n2n_sp)
e2n_sp = Variable(e2n_sp)
subg_sp = Variable(subg_sp)
node_degs = Variable(node_degs)
h = self.sortpooling_embedding(node_feat, edge_feat, n2n_sp, e2n_sp, subg_sp, graph_sizes, node_degs)
return h
def sortpooling_embedding(self, node_feat, edge_feat, n2n_sp, e2n_sp, subg_sp, graph_sizes, node_degs):
''' if exists edge feature, concatenate to node feature vector '''
if edge_feat is not None:
#input_edge_linear = self.w_e2l(edge_feat)
input_edge_linear = edge_feat
e2npool_input = gnn_spmm(e2n_sp, input_edge_linear)
node_feat = torch.cat([node_feat, e2npool_input], 1)
''' graph convolution layers '''
lv = 0
cur_message_layer = node_feat
cat_message_layers = []
while lv < len(self.latent_dim):
n2npool = gnn_spmm(n2n_sp, cur_message_layer) + cur_message_layer # Y = (A + I) * X
node_linear = self.conv_params[lv](n2npool) # Y = Y * W
normalized_linear = node_linear.div(node_degs) # Y = D^-1 * Y
cur_message_layer = torch.tanh(normalized_linear)
cat_message_layers.append(cur_message_layer)
lv += 1
cur_message_layer = torch.cat(cat_message_layers, 1)
''' sortpooling layer '''
sort_channel = cur_message_layer[:, -1]
batch_sortpooling_graphs = torch.zeros(len(graph_sizes), self.k, self.total_latent_dim)
if torch.cuda.is_available() and isinstance(node_feat.data, torch.cuda.FloatTensor):
batch_sortpooling_graphs = batch_sortpooling_graphs.cuda()
batch_sortpooling_graphs = Variable(batch_sortpooling_graphs)
accum_count = 0
for i in range(subg_sp.size()[0]):
to_sort = sort_channel[accum_count: accum_count + graph_sizes[i]]
k = self.k if self.k <= graph_sizes[i] else graph_sizes[i]
_, topk_indices = to_sort.topk(k)
topk_indices += accum_count
sortpooling_graph = cur_message_layer.index_select(0, topk_indices)
if k < self.k:
to_pad = torch.zeros(self.k-k, self.total_latent_dim)
if torch.cuda.is_available() and isinstance(node_feat.data, torch.cuda.FloatTensor):
to_pad = to_pad.cuda()
to_pad = Variable(to_pad)
sortpooling_graph = torch.cat((sortpooling_graph, to_pad), 0)
batch_sortpooling_graphs[i] = sortpooling_graph
accum_count += graph_sizes[i]
''' traditional 1d convlution and dense layers '''
to_conv1d = batch_sortpooling_graphs.view((-1, 1, self.k * self.total_latent_dim))
conv1d_res = self.conv1d_params1(to_conv1d)
conv1d_res = self.conv1d_activation(conv1d_res)
conv1d_res = self.maxpool1d(conv1d_res)
conv1d_res = self.conv1d_params2(conv1d_res)
conv1d_res = self.conv1d_activation(conv1d_res)
to_dense = conv1d_res.view(len(graph_sizes), -1)
if self.output_dim > 0:
out_linear = self.out_params(to_dense)
reluact_fp = self.conv1d_activation(out_linear)
else:
reluact_fp = to_dense
return self.conv1d_activation(reluact_fp)