-
Notifications
You must be signed in to change notification settings - Fork 2
/
builders.py
81 lines (64 loc) · 3 KB
/
builders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import torch
import datetime
from timm.scheduler.cosine_lr import CosineLRScheduler
from models.resnet import SRDetectorResnet
from models.mobilenet import SRDetectorMobilenet
from loss import TripletLoss
def build_logger(config):
logger_dir = config.LOG.DIR
saved_models_dir = f'{logger_dir}/saved_models/{config.MODEL.NAME}-{config.MODEL.VERSION}_{datetime.datetime.now().strftime("%Y%m%d")}/'
tb_writer_dir = f'{logger_dir}/tensorboard_logs/{config.MODEL.NAME}-{config.MODEL.VERSION}_{datetime.datetime.now().strftime("%Y%m%d")}/'
metrics_dir = f'{logger_dir}/counted_metrics/{config.MODEL.NAME}-{config.MODEL.VERSION}_{datetime.datetime.now().strftime("%Y%m%d")}/'
os.makedirs(saved_models_dir, exist_ok=True)
os.makedirs(tb_writer_dir, exist_ok=True)
os.makedirs(metrics_dir, exist_ok=True)
config.defrost()
config.LOG.SAVED_MODELS = saved_models_dir
config.LOG.TB_LOGS = tb_writer_dir
config.LOG.METRICS = metrics_dir
config.freeze()
def build_model(config):
model_name = config.MODEL.NAME
if model_name.startswith("resnet"):
model = SRDetectorResnet(n_classes=config.MODEL.NUM_CLASSES, n_channels=int(config.MODEL.N_FRAMES * 3),
embedding_size=config.MODEL.EMBEDDING_SIZE)
elif model_name.startswith("mobilenet"):
model = SRDetectorMobilenet(n_classes=config.MODEL.NUM_CLASSES, n_channels=int(config.MODEL.N_FRAMES * 3),
embedding_size=config.MODEL.EMBEDDING_SIZE)
else:
raise Exception("Unknown model name")
if config.MODEL.PRETRAINED:
model.load_state_dict(torch.load(config.MODEL.PRETRAINED)['model'])
return model
def build_optimizer(parameters, config):
optimizer = torch.optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
if config.MODEL.PRETRAINED:
optimizer.load_state_dict(torch.load(config.MODEL.PRETRAINED)['optimizer'])
return optimizer
def build_scheduler(optimizer, config, n_iter_per_epoch):
scheduler = CosineLRScheduler(
optimizer,
t_initial=int(config.TRAIN.NUM_EPOCHS * n_iter_per_epoch),
lr_min=config.TRAIN.MIN_LR,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch),
cycle_limit=1,
t_in_epochs=False,
)
if config.MODEL.PRETRAINED:
scheduler.load_state_dict(torch.load(config.MODEL.PRETRAINED)['scheduler'])
return scheduler
def build_scaler(config):
scaler = torch.cuda.amp.GradScaler()
if config.MODEL.PRETRAINED:
scaler.load_state_dict(torch.load(config.MODEL.PRETRAINED)['scaler'])
return scaler
def build_epoch(config):
epoch = config.TRAIN.START_EPOCH
if config.MODEL.PRETRAINED:
epoch = torch.load(config.MODEL.PRETRAINED)['epoch']
return epoch
def build_criterion(config):
return TripletLoss(config)