-
Notifications
You must be signed in to change notification settings - Fork 11
/
runner.py
634 lines (542 loc) · 25.2 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import sys
import random
import logging
import argparse
import pickle
import pandas as pd
import numpy as np
from queue import PriorityQueue
import shutil
import threading
import time
import copy
from atomic_update import AtomicUpdate
import math
#Cluster setup
from resources.cluster import Cluster
from resources.server_config import CustomServerConfig
from resources.rack import Rack
from jobs.workload import Workload
# Schedulers
from schedulers.fifo_synergy_new import FIFO
from schedulers.las_synergy_new import LAS
from schedulers.srtf_synergy_new import SRTF
from schedulers.ftf_synergy_new import FTF
from schedulers.drf import DRF
from schedulers.tetris import TETRIS
from schedulers.srsf import SRSF
from schedulers.scheduler import Scheduler
#Events
from event_queue import EventQueue
from events.cluster_event import ClusterEvent
from events.job_arrival_event import JobArrivalEvent
from events.schedule_event import ScheduleEvent
from events.allocation_event import AllocationEvent
from events.deploy_event import DeployEvent
#Graphs and metrics
from metrics.stats import DataSeries, DataSeriesCollection
from metrics.cluster_util import ClusterUtilization
#Runtime
from deployment.runtime.rpc import scheduler_server
from deployment.runtime.rpc import scheduler_client
import schedulers.callbacks as scheduler_callbacks
from deployment.helper import get_self_ip
SCHEDULER_PORT = 14000
class Runner:
def __init__(
self,
cluster_job_log,
scheduler='SRTF',
jobs_per_hour=5,
#series_id_filter=(15, 40),
#series_id_filter=(1, 7999),
#series_id_filter=(3000, 4000),
series_id_filter=(4000, 5000),
#series_id_filter=(25, 50),
model_class_split=(34,33,33),
exponential=True,
philly_arrival=False,
multigpu=False,
small_trace=False,
placement=True,
prioritize=False,
fair=True,
tune=False,
opt=False,
simulate=True,
round_duration=300,
conn_list=None,
config_file='configs/default_cluster.ini',
num_jobs_default=0,
static=False,
record_trace=False,
rec_trace_file=None,
trace=None):
self.logger = logging.getLogger(__name__)
ClusterEvent.runner = self
Scheduler.runner = self
self.round_duration = round_duration
self.num_jobs_default = num_jobs_default
self.num_jobs_so_far = 0
self.time = 0
self.static = static
self.sched_port = SCHEDULER_PORT
self.time_limit = -1
self.terminate = False
self.runnable_jobs = list()
self.record_trace = record_trace
self.rec_trace_file = rec_trace_file
self.trace = trace
if record_trace:
self.rec_trace_file += str(jobs_per_hour)
if fair:
self.rec_trace_file += '_fair'
if tune:
self.rec_trace_file += '_tune'
if opt:
self.rec_trace_file += '_opt'
fw = open(self.rec_trace_file, 'w+')
# IDs of jobs to be run in the next round
self.job_ids_to_run = []
self.job_ids_finished_this_round = []
self.finished_jobs = list()
self.real_start_time = time.time()
self.sched_job_threshold = 0
# IDs of jobs whose lease is renewed for the subsequent round.
# Must be populated by the background scheduling process before the end
# of the current scheduling round
self.job_lease_status = dict()
self.round_end_report = dict()
self.simulate = simulate
self.conn_list = conn_list
self.config_file = config_file
self.scheduler_lock = threading.Lock()
self.done_sched_next_round = AtomicUpdate()
self.ready_to_deploy_next_round = AtomicUpdate()
self.deploy_ongoing = AtomicUpdate()
self.cluster = Cluster(config_file=self.config_file, simulate=self.simulate, conn_list = self.conn_list)
self.cluster_backup = None
self.cluster_cleanstate = None
# If launching obs on physical cluster, wait until all workers have been registered
if not self.simulate:
self.scheduler_callbacks = scheduler_callbacks.SchedulerCallbacks(self)
callbacks = {
'RegisterWorker': self.scheduler_callbacks.register_worker_callback,
'RegisterJob' : self.scheduler_callbacks.register_job_callback,
'UpdateIters' : self.scheduler_callbacks.update_iters_callback,
'RoundEnd' : self.scheduler_callbacks.round_end_callback,
'LeaseEnded' : self.scheduler_callbacks.lease_ended_callback
}
#Scheduler server
self.server_thread = threading.Thread(target=scheduler_server.serve,
args=(SCHEDULER_PORT, callbacks))
self.server_thread.daemon = True
self.server_thread.start()
# Asynchronous allocation thread
#self.alloc_thread = threading.Thread(target=self.get_allocation)
#self.alloc_thread.daemon = True
#self.alloc_thread.start()
while len(self.cluster.machine_to_rpc_map.keys()) != len(self.cluster.servers):
time.sleep(0.5)
self.cluster_cleanstate = copy.deepcopy(self.cluster)
# Keep a log of max resoures in cluster to plot utilization
_,self.max_servers, self.max_gpus, self.max_cpus,self.max_mem,self.max_sspeed, self.max_net=self.cluster.size
self.logger.info("Cluster GPUs={}, CPUs={}, Mem={}GB, Sspeed={}MB/s".format(self.max_gpus, self.max_cpus, self.max_mem, self.max_sspeed))
self.logger.info("Running {} with exp={}, multigpu={}, plcement={}, fair={}, tune={}, opt={}, prio-all={}"
.format(scheduler, exponential,multigpu,placement,fair,tune,opt,prioritize))
self.workload = Workload(
cluster_job_log=cluster_job_log,
jobs_per_hour=jobs_per_hour,
exponential=exponential,
philly_arrival=philly_arrival,
prioritize=prioritize,
multigpu=multigpu,
small_trace=small_trace,
series_id_filter=series_id_filter,
model_class_split=model_class_split,
per_server_size=self.cluster.per_server_size,
num_jobs_default=self.num_jobs_default,
trace=trace)
self.scheduler = globals()[scheduler](
round_duration=round_duration,
placement=placement,
fair=fair,
tune=tune,
opt=opt,
simulate=simulate)
self.event_queue = EventQueue()
self.init_event_queue(simulate=self.simulate)
self.series_id_filter = series_id_filter
self.filtered_ids = 0
self.total_runnable_jobs = DataSeries(
['time (hours)', 'total jobs'],
series_id_filter=series_id_filter,
no_filter=True)
self.total_gpu_demand = DataSeries(
['time (hours)', 'total gpu demand (%)'],
series_id_filter=series_id_filter,
no_filter=True)
self.job_completion_times = DataSeries(
['job id', 'time (hours)'],
series_id_filter=series_id_filter)
#no_filter=True)
self.job_expected_duration = DataSeries(
['job id', 'time (hours)'],
series_id_filter=series_id_filter,
no_filter=True)
# Cluster statistics
self.cluster_util = ClusterUtilization(self.max_servers, name="util")
self.cluster_alloc = ClusterUtilization(self.max_servers, name="alloc")
self.cluster_demand = ClusterUtilization(self.max_servers, name="demand")
#print(self.cluster.alloc_stats)
def remove_finished_jobs(self):
for job_id in self.job_ids_finished_this_round:
if job_id in self.job_ids_to_run:
self.job_ids_to_run.remove(job_id)
self.job_ids_finished_this_round = []
def run_simulation(self):
num_events=0
while not self.event_queue.empty() and not self.terminate:
event = self.event_queue.get()
#if "SCHEDULE" not in str(event) and "LEASE" not in str(event):
# self.logger.info("Time: {:.2f}, Current Event: {}".format(self.get_time(), str(event)))
# self.logger.info("Time: {:.2f}, Queue: {}".format(self.get_time(), self.event_queue))
event.handleEvent()
num_events += 1
return self.get_stats()
def run_deployment(self):
while not self.terminate:
event = self.event_queue.get()
if event.time > self.get_time():
self.event_queue.put(event)
time.sleep(0.5)
continue
self.logger.info("Time: {:.2f}, Current Event: {}".format(self.get_time(), str(event)))
self.logger.info("Time: {:.2f}, Queue: {}".format(self.get_time(), self.event_queue))
event.handleEvent()
time.sleep(0.5)
return self.get_stats()
def get_stats(self):
return (self.total_gpu_demand,
self.job_completion_times)
def make_plots(self, dir_path):
self.total_runnable_jobs.plot_step(path=dir_path)
self.total_gpu_demand.plot_step(path=dir_path)
self.job_completion_times.plot_cdf(path=dir_path)
self.job_expected_duration.plot_cdf(path=dir_path, prefix="expected-duration")
if self.simulate:
self.cluster_util.plot_aggregate(path=dir_path, stat="util")
self.cluster_alloc.plot_aggregate(path=dir_path, stat="alloc")
self.cluster_demand.plot_aggregate(path=dir_path, stat="demand")
#self.cluster_util.plot_per_server(path=dir_path)
#self.cluster_alloc.plot_per_server(path=dir_path)
#self.cluster_demand.plot_per_server(path=dir_path)
def add_event(self, event):
self.event_queue.put(event)
def add_next_job(self, arrival=-1):
job = self.workload.generate_next_job(self.get_time(), arrival=arrival)
self.add_event(JobArrivalEvent(job.job_arrival_time, job))
self.num_jobs_so_far += 1
if self.record_trace:
fw = open(self.rec_trace_file, 'a+')
self.record_job(job, fw)
def init_event_queue(self, simulate=True):
if simulate:
if self.trace is not None:
arr_time = 0
for job in self.workload.jobs:
self.add_event(JobArrivalEvent(job.job_arrival_time, job))
arr_time = math.ceil(self.workload.jobs[0].job_arrival_time /self.round_duration)* self.round_duration
if self.static:
arr_time = 1
self.add_event(ScheduleEvent(arr_time, self.scheduler))
elif self.static:
self.logger.info("Static workload")
job = self.add_next_job(arrival=0)
self.add_event(ScheduleEvent(1, self.scheduler))
else:
self.logger.info("Dynamic workload")
self.add_next_job()
self.add_event(ScheduleEvent(0, self.scheduler))
else:
#Add all jobs from workload file, static arrival
for job in self.workload.jobs:
self.add_event(JobArrivalEvent(job.job_arrival_time, job))
self.add_event(AllocationEvent(self.get_time(), self.scheduler))
self.add_event(DeployEvent(self.get_time(), self.scheduler))
def record_job(self, job, fw):
string = "{},{},{},{},{}\n".format(job.job_id, job.job_model.model_name, job.job_arrival_time, job.job_total_iteration, job.job_gpu_demand)
fw.write(string)
def is_measurement_complete(self, job_id):
if self.series_id_filter[0] <= job_id < self.series_id_filter[1]:
self.filtered_ids += 1
if self.filtered_ids ==\
self.series_id_filter[1] - self.series_id_filter[0]:
return True
return False
def get_time(self):
if self.simulate:
return self.time
else:
# Relative current time since the start of this workload
return time.time() - self.real_start_time
def set_time(self, time):
self.time = time
if self.time_limit > 0 and self.time > self.time_limit:
self.terminate = True
def get_runnable_jobs(self):
return self.runnable_jobs
def get_job_by_id(self, job_id):
for job in self.runnable_jobs:
if job.job_id == job_id:
return job
def start_job(self, job):
self.logger.info("[{}] : Starting at {:.2f}s, arr = {:.2f}, dur = {:.2f}".format(str(job), (time.time()-self.real_start_time), job.job_arrival_time/3600, job.job_iteration_time*job.job_total_iteration))
self.runnable_jobs.append(job)
self.total_runnable_jobs.put_delta(self.time, 1, job.job_id)
self.workload.add_runnable_job(job.job_class_id)
self.total_gpu_demand.put_delta(
self.time,
job.job_gpu_demand*100./self.cluster.get_num_gpus(),
job.job_id)
def finish_job(self, job):
#self.logger.info("[{}] : Finishing at {:.2f}s".format(str(job), (time.time()-self.real_start_time)))
self.job_ids_finished_this_round.append(job.job_id)
self.runnable_jobs.remove(job)
self.finished_jobs.append(job)
self.workload.remove_runnable_job(job.job_class_id)
self.total_runnable_jobs.put_delta(self.time, -1, job.job_id)
self.job_expected_duration.put(
job.job_id,
job.job_iteration_time*job.job_total_iteration,
job.job_id)
self.total_gpu_demand.put_delta(
self.time,
-job.job_gpu_demand*100./self.cluster.get_num_gpus(),
job.job_id)
self.job_completion_times.put(
job.job_id,
self.time - job.job_arrival_time,
job.job_id)
self.logger.info("[{}] : Finished {} at {:.2f}hrs, arrival:{:.2f}hrs, iter={:.2f}s, num_iter={}".format(job.job_id, job.job_model.model_name, self.time/3600, job.job_arrival_time/3600, job.job_iteration_time, job.job_total_iteration))
#self.logger.info("[{}] : Finished {}:{} at {:.2f}hrs, arrival:{:.2f}hrs, iter={:.2f}s, num_iter={}".format(job.job_id, str(job), job.job_model.model_name, self.time/3600, job.job_arrival_time/3600, job.job_iteration_time, job.job_total_iteration))
if self.is_measurement_complete(job.job_id):
self.logger.info("Terminating workload at {:.2f} hrs : last job ID {}, total finished {}, pending {}".format(self.time/3600, job.job_id, len(self.finished_jobs),len(self.runnable_jobs)))
self.terminate = True
def benchmark(seed, cluster_job_log, use_cache, cache_result, prioritize, plot=False,
exponential=True, philly_arrival=False, multigpu=False, debug_multi=False, placement=True, fair=True, tune=False, opt=False,
simulate=True, conn_list=None, config_file=None, num_jobs_default=0, small_trace=False, static=False,
record_trace=False, rec_trace=None, trace=None, plot_dir="./plots/"):
logger = logging.getLogger(__name__)
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
# Testing
schedulers = ['FIFO+fair']
scheduler_name = ['FIFO-Fair']
# Intro
#schedulers = ['LAS+fair' , 'LAS+tune', 'SRTF+fair', 'SRTF+tune']
#scheduler_name = ['LAS-Fair', 'LAS-Tune', 'SRTF-Fair', 'SRTF-Tune']
#schedulers = ['TETRIS', 'TETRIS+tune']
#scheduler_name = ['TETRIS', 'TETRIS-tune']
#schedulers = ['DRF', 'DRF+tune']
#scheduler_name = ['DRF-Greedy', 'DRF-Tune']
jobs_per_hours = np.arange(9.0, 10, 1)
#jobs_per_hours = np.arange(0.5, 8.5, 0.5)
class_split=[(20,70,10)]
#class_split=[(20,70,10), (33,33,33), (50,0,50)]
agg_total_gpu_demand_collection = DataSeriesCollection()
agg_job_completion_times_collection = DataSeriesCollection()
for split in class_split:
total_gpu_demand_collection = DataSeriesCollection()
job_completion_times_collection = DataSeriesCollection()
for i, scheduler in enumerate(schedulers):
# Fix place, fair, and tune based on scheduler
placement = fair = tune = opt= False
if 'place' in scheduler:
placement = True
if 'fair' in scheduler:
fair = True
if 'tune' in scheduler:
tune = True
if 'opt' in scheduler:
opt = True
for jobs_per_hour in jobs_per_hours:
no_agg=False
index = (scheduler_name[i], np.round(jobs_per_hour, 1), split)
random.seed(seed)
print("Running scheduler {} - {}".format(scheduler, index))
scheduler = scheduler.split('+')[0]
if use_cache and\
os.path.exists("cache/stats_%s_%s_%s.pickle" % index):
(total_gpu_demand, job_completion_times) = pickle.load(
open("cache/stats_%s_%s_%s.pickle" % index, "rb"))
fname = "cache/util_%s_%s_%s.pickle" % index
print(fname)
f = open(fname, "rb")
stats = pickle.load(f)
cluster_util, cluster_alloc, cluster_demand = stats
if plot:
dir_path = './graphs/per_run_cache/%s_%s_%s' % index
if not os.path.exists(dir_path):
os.makedirs(dir_path)
job_completion_times.plot_cdf(path=dir_path)
total_gpu_demand.plot_step(path=dir_path)
else:
runner = Runner(
cluster_job_log=cluster_job_log,
scheduler=scheduler,
jobs_per_hour=jobs_per_hour,
model_class_split=split,
exponential=exponential,
philly_arrival=philly_arrival,
multigpu=multigpu,
small_trace=small_trace,
static=static,
placement=placement,
prioritize=prioritize,
fair=fair,
tune=tune,
opt=opt,
simulate=simulate,
conn_list=conn_list,
config_file=config_file,
num_jobs_default=num_jobs_default,
record_trace=record_trace,
rec_trace_file=rec_trace,
trace=trace)
if simulate:
(total_gpu_demand, job_completion_times) = runner.run_simulation()
else:
(total_gpu_demand, job_completion_times) = runner.run_deployment()
if cache_result:
pickle.dump(
(total_gpu_demand, job_completion_times),
open("cache/stats_%s_%s_%s.pickle" % index, "wb"))
pickle.dump(
(runner.cluster_util, runner.cluster_alloc, runner.cluster_demand),
open("cache/util_%s_%s_%s.pickle" % index, "wb"))
if plot:
dir_path = './graphs/per_run/%s_%s_%s' % index
if not os.path.exists(dir_path):
os.makedirs(dir_path)
runner.make_plots(dir_path)
(runnable_task_split, overall_task_split) = \
runner.workload.get_job_task_split()
logger.info("Task split (runnable) : image={}, lang={}, speech={}".format(*runnable_task_split))
logger.info("Task split (overall) : image={}, lang={}, speech={}".format(*overall_task_split))
total_gpu_demand_collection.put(
index, total_gpu_demand)
job_completion_times_collection.put(
index, job_completion_times)
if not no_agg:
agg_total_gpu_demand_collection.put(
index, total_gpu_demand)
agg_job_completion_times_collection.put(
index, job_completion_times)
logger.info("{} : {}".format(scheduler, str(np.round(jobs_per_hour, 1))))
agg_job_completion_times_collection.plot_cdf()
agg_total_gpu_demand_collection.plot_weighted_mean(
xlabel="Load (jobs/hour)", ylabel="Avg. GPU Demand (%)")
agg_job_completion_times_collection.plot_mean(
xlabel="Load (jobs/hour)", ylabel="Avg. JCT (hours)")
cmd = "mv *.png " + plot_dir
print("Moving plots to {}".format(plot_dir))
os.system(cmd)
def parser():
parser = argparse.ArgumentParser(description='Parse Arguments.')
parser.add_argument('--seed', default=42, type=int)
# If not gicven cluster log, this is the number of jobs generated
parser.add_argument('--num-jobs-default', default=0, type=int)
# related to philly trace
parser.add_argument('--cluster_job_log', default=None, type=str)
# sum attempts duration by default
parser.add_argument('--no_sum_attempts', default=False, action="store_true")
# do not analyze trace by default
parser.add_argument('--analyze_trace', default=False, action="store_true")
# use cache by default
parser.add_argument('--no_use_cache', default=False, action="store_true")
# cache intermediate result by default
parser.add_argument('--no_cache_result', default=False, action="store_true")
# do not prioritize benchmarked jobs by default
parser.add_argument('--prioritize', default=False, action="store_true")
# Plot per-run micro stats
parser.add_argument('--plot', default=False, action="store_true")
parser.add_argument('--static', default=False, action="store_true")
parser.add_argument('--small_trace', default=False, action="store_true")
parser.add_argument('--no_exp', default=False, action="store_true")
parser.add_argument('--multigpu', default=False, action="store_true")
parser.add_argument('--no_placement', default=False, action="store_true")
parser.add_argument('--no_fair', default=False, action="store_true")
parser.add_argument('--tune', default=False, action="store_true")
parser.add_argument('--philly_arrival', default=False, action="store_true")
parser.add_argument('--opt', default=False, action="store_true")
parser.add_argument('--record_trace', default=False, action="store_true")
parser.add_argument('--rec_trace', default='./record', type=str)
parser.add_argument('--replay_trace', default=None, type=str)
parser.add_argument('--plot_dir', default="./plots/", type=str)
parser.add_argument('--config_file', default='configs/default_cluster.ini', type=str)
parser.add_argument('--conn_file', default=None, type=str)
parser.add_argument('--no_simulate', default=False, action="store_true")
# debug mode
parser.add_argument('--debug', default=False, action="store_true")
args = parser.parse_args()
return args
def debug(cluster_job_log):
logger = logging.getLogger(__name__)
scheduler = 'FIFO'
jobs_per_hour = 5
simulator = Runner(
cluster_job_log=cluster_job_log,
scheduler=scheduler,
simulate=True,
jobs_per_hour=jobs_per_hour)
(total_gpu_demand, job_completion_times) = simulator.run_simulation()
if __name__ == '__main__':
args = parser()
random.seed(args.seed)
if args.debug:
log_level = logging.DEBUG
else:
log_level = logging.INFO
logging.basicConfig(
format='%(module)s - %(funcName)s - %(levelname)s - %(message)s',
level=log_level)
if not args.no_use_cache:
if not os.path.exists('cache'):
os.makedirs('./cache')
if args.analyze_trace:
# analyze philly trace
workload = Workload(
cluster_job_log=args.cluster_job_log,
sum_attempts=(not args.no_sum_attempts),
multigpu = args.multigpu)
workload.analyze_philly_trace()
elif args.debug:
debug(None)
else:
# benchmark with increasing load
benchmark(
seed=args.seed,
cluster_job_log=args.cluster_job_log,
use_cache=(not args.no_use_cache),
cache_result=(not args.no_cache_result),
prioritize=args.prioritize,
exponential=(not args.no_exp),
philly_arrival=(args.philly_arrival),
multigpu=args.multigpu,
small_trace=args.small_trace,
static=args.static,
placement=(not args.no_placement),
fair=(not args.no_fair),
tune=args.tune,
opt=args.opt,
simulate=(not args.no_simulate),
conn_list=args.conn_file,
config_file=args.config_file,
plot=args.plot,
num_jobs_default=args.num_jobs_default,
record_trace=args.record_trace,
rec_trace=args.rec_trace,
trace=args.replay_trace,
plot_dir=args.plot_dir)