diff --git a/STEM.md b/STEM.md index 7ff4aef..576cdbb 100644 --- a/STEM.md +++ b/STEM.md @@ -104,11 +104,12 @@ It is important to remember the difference between the wavefunction sampling and Aluminum, iron and gold nanoparticles on a carbon film: **Left** image from a circular detector. **Middle** image from an annular detector **Right** differential phase contrast reconstruction. Notice how changing the collection angles impacts the contrast and signal to noise. ``` +(stem-image-simulation)= #### Image simulation: STO/LTO Scanning imaging modes such as STEM works by rastering an electron probe across a sample pixel by pixel and recording the scattering signal. The computational cost of the simulation is directly proportional to the number of scan pixels, each requiring a separate multislice simulation. For periodic speciments, even though the potential needs to be large enough to fit the probe, there is no need to scan over repated unit cells as tiling afterwards can yield the same result. -As an example, we simulate the BF (0 to 20 mrad), MAADF (40 to 100 mrad) and HAADF (100 to 180 mrad) images of a STO/LTO interface that we built in the [simulation inputs](./sim_inputs.md) chapter. Note that since the structure repeats in the $x$-direction, we only scan over the unit cell, as shown in [](#fig_stem_specimen) below. The images simulated with a primary beam energy of 150 keV, a defocus of 50 Å, and a probe convergence-semiangle of 20 mrad are shown in [](#fig_stem_sto-lto_image) below. Note that these are quite pixelated since we simulated at Nyqvist sampling to save computational effort; see [post-processing](./post.md) for how these are interpolated to a higher resolution. +As an example, we simulate the BF (0 to 20 mrad), MAADF (40 to 100 mrad) and HAADF (100 to 180 mrad) images of a STO/LTO interface that we built in the [simulation inputs](./sim_inputs.md) chapter. Note that since the structure repeats in the $x$-direction, we only scan over the unit cell, as shown in [](#fig_stem_specimen) below. The images simulated with a primary beam energy of 150 keV, a defocus of 50 Å, and a probe convergence-semiangle of 20 mrad are shown in [](#fig_stem_image) below. Note that these are quite pixelated since we simulated at Nyqvist sampling to save computational effort; see [post-processing](./post.md) for how these are interpolated to a higher resolution. ```{figure} #app:stem_sto-lto_scan :name: fig_stem_specimen @@ -118,7 +119,7 @@ A SrTiO3/LaTiO3 (STO/LTO) interface model. The red overlai ```{figure} #app:stem_sto-lto_image :name: fig_stem_image -:placeholder: ./static/stem_image.png +:placeholder: ./static/stem_images.png Bright-field (BF), medium-angle annular dark-field (MAADF), and high-angle annular dark-field (HAADF) imges of the SrTiO3/LaTiO3 (STO/LTO) interface. ``` diff --git a/inputs.md b/inputs.md index a88a6a4..f9477d1 100644 --- a/inputs.md +++ b/inputs.md @@ -5,8 +5,6 @@ numbering: label : sim_inputs_page --- -text - (specimen-models)= ## Specimen models @@ -24,7 +22,9 @@ The `Atoms` object defines a collection of atoms. To define `Atoms` from scratch For example, to create a basic model of the N2 molecule, we could define: -`atoms = ase.Atoms("N2", positions=[(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], cell=[6, 6, 6])` +```Python +atoms = ase.Atoms("N2", positions=[(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], cell=[6, 6, 6]) +``` All these attributes of the `Atoms` object are stored in underlying NumPy arrays, which can be directly modified if desired. Convenient arithmetic operations also directly work for the `Atoms` object, so structures can be easily combined to create more complex specimens. @@ -32,7 +32,9 @@ All these attributes of the `Atoms` object are stored in underlying NumPy arrays ASE can import all common atomic-structure formats (full list [here](https://wiki.fysik.dtu.dk/ase/ase/io/io.html)). Below we import a `.cif`-file defining a unit cell of strontium titanate (SrTiO3) that we provide with this text and will use in further examples. -`srtio3 = ase.io.read("srtio3.cif")` +```Python +srtio3 = ase.io.read("srtio3.cif") +``` ### Manipulating atoms *ab*TEM always assumes that the imaging electrons propagate along the $z$-axis in the direction from _negative to positive_ coordinate values. Hence, to choose the zone axis, we need to manipulate the atoms so they are properly aligned. @@ -45,4 +47,13 @@ In the widget below, we have oriented the strontium titanate structure along the :name: fig_sto_supercell :placeholder: ./static/sto_supercell.png **Interactive widget showing supercell construction for the STO(110) supercell. +``` + +Since the positions and atomic numbers are just `NumPy` arrays, they can be modified in-place. Below, we create an SrTiO3/LaTiO3 interface by changing the atomic numbers of the Sr atoms with a $y$-coordinate less than $7.5 \ \mathrm{Å}$ in a (3,4,10) supercell oriented along the (110) zone axis. This interface created from a will be later used for [STEM image simulations](#stem-image-simulation). + +```python +sto_lto = repeated_srtio3.copy() +mask = sto_lto.symbols == "Sr" +mask = mask * (sto_lto.positions[:, 1] < 7.5) +sto_lto.numbers[mask] = 57 ``` \ No newline at end of file diff --git a/notebooks/06.1_Atoms_STO-LTO.ipynb b/notebooks/06.1_Atoms_STO-LTO.ipynb index 4822a36..d010e4d 100644 --- a/notebooks/06.1_Atoms_STO-LTO.ipynb +++ b/notebooks/06.1_Atoms_STO-LTO.ipynb @@ -13,10 +13,36 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 59, "id": "95c10e75-d7d3-40fa-a127-142d5f84438d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "faf9dbcc7d8c47dba643e1ed20033b1e", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+IUlEQVR4nO3dd3hTdcPG8e9J0pZdpKyWpYAUAVllT1kiIkNFfFCQjWwRB+LCAeKeTEHAgYKL6RYFZEPZe4gyWja0ULqSc94/CryioECbnoz7c125gNImd+SY3PmNcwzLsixEREREJGg47A4gIiIiItlLBVBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVABFREREgowKoIiIiEiQUQEUERERCTIqgCIiIiJBRgVQREREJMioAIqIiIgEGRVAERERkSCjAigiIiISZFQARURERIKMCqCIiIhIkFEBFBEREQkyKoAiIiIiQUYFUERERCTIqACKiIiIBBkVQBEREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJBRARQREREJMiqAIiIiIkFGBVBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVABFREREgowKoIiIiEiQUQEUERERCTIqgCIiIiJBRgVQREREJMioAIqIiIgEGRVAERERkSCjAigiIiISZFQARURERIKMCqCIiIhIkFEBFBEREQkyKoAiIiIiQUYFUERERCTIqACKiIiIBBkVQBEREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJBRARQREREJMiqAIiIiIkFGBVBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVABFREREgowKoIiIiEiQUQEUERERCTIuuwP4M9M0iYuLI2/evBiGYXccERERuQKWZXH69GmioqJwOIJzLEwFMBPi4uIoUaKE3TFERETkGuzfv5/ixYvbHcMWKoCZkDdvXiDjAMqXL5/NaURERORKJCYmUqJEiQvv48FIBTATzk/75suXTwVQRETEzwTz8q3gnPi+hJdffhnDMBgyZIjdUURERES8SgUQWL16NRMnTqRy5cp2RxERERHxuqAvgGfOnOH+++9n0qRJXHfddXbHEREREfG6oC+AAwYMoHXr1jRv3tzuKCIiIiLZIqg3gcyYMYO1a9eyevXqK/r+1NRUUlNTL/w5MTHRW9FEREREvCZoRwD379/PQw89xPTp08mRI8cV/czo0aMJDw+/cNM5AEVERMQfGZZlWXaHsMPs2bO58847cTqdF77m8XgwDAOHw0FqaupFfweXHgEsUaIECQkJOg2Mn3O73ezYsQOAiIiIoD0zvIiILzBNk+PHjwMQHR2Ny5W1E5aJiYmEh4cH9ft30E4BN2vWjE2bNl30te7du1O+fHmGDRv2j/IHEBYWRlhYWHZFlGy0Y8cOKlWqZHcMERH5m82bN1OxYkW7YwScoC2AefPm/ccbfu7cuYmIiFAREBERkYAWtAVQ5K8iIiIu/H7z5s0UKlTIxjQiIsHt6NGjFwZj/vr6LFlHBfAvFi5caHcEsclf1/wVKlSIwoUL25hGRETO05ps79B/VREREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJBRARQREREJMiqAIiIiIkFGBVBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVABFREREgowKoIiIiEiQUQEUERERCTIqgCIiIiJBRgVQREREJMioAIqIiIgEGRVAERERkSCjAigiIiISZFQARURERIKMCqCIiIhIkFEBFBEREQkyKoAiIiIiQUYFUERERCTIqACKiIiIBBkVQBEREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJBRARQREREJMiqAIiIiIkFGBVBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVABFREREgowKoIiIiEiQUQEUERERCTIqgCIiIiJBRgVQREREJMioAIqIiIgEGRVAERERkSCjAigiIiISZFQARURERIKMCqCIiIhIkFEBFBEREQkyKoAiIiIiQcZldwARbzp8+DB79+4lLi6O+Ph44uPjiYuLu3A7duwYaWlppKWlXfiZ0qXLEBoaQkhICPny5SMyMpKoqCiioqKIjIy88OdixYpRpkwZXC79byTe5fF42LNnDwcOHLjoOI6Pj+fgwYPEx8eTmJiI2+0mPd2Nx+PGMAxcLhcul4vQ0FAKFixIZGQkxYoVu3AMnz+eb7jhBooWLWr30xSRbKR3LgkY8fHxxMbGEhsby5rYWGLXrCE+Pv7C37tcLgoWLESBiAgKFChA6TI3Uj2mFiGhIaSmpvLxh1MB6HDPvYSFheF2u0lKOsOxY8fYuWs3K1as5PjxY5w5c+bCfebMmZMqVapQo0YNatSoQUxMDOXLl1cplGvm8XjYvn07a9asyTiW16xhw4YNnD179sL35MmTh4iIglxXoAAREQWpHlOTPHny4nK5cDqdOBwZkztujxuPx0N6WjqnTp3kxPHjrFy1mhPHj3Ps2FHcbveF+yxatCgxMTEXHcuRkZHZ/vxFJHsYlmVZdofwV4mJiYSHh5OQkEC+fPnsjhN09u/fz7x58/j+hx9Ys3r1hbIXnj8/5cpFc2O5aMqVK0/xEiUoGFGQvPnyXXhj/LuTJ09wV7vWAHw95xuuu67AZR83OTmZE8ePcfjwYXbv3sXOHdvZtXMH+/b9Cfx/KWzcuDFt27aldu3aOJ3OLH72Eig8Hg+rVq1i7ty5LFq06KKyV7JkKcqWK0d0ufKUvbEcRYoUoUBEQXLmzJnpxzVNk9OJiRw/fowDBw6wc+d2du7Ywa6dOzh16iSQUQpr1KjBbbfdRps2bShZsmSmH1fkShw5coQiRYoAGTM5hQsXztL71/u3CmCm6ADKXpZlsW7dOubOncucOXNYv349LpeLSjdXpkLFSpQrV57o6PIUKVoUwzCu6r6vpgBeTlJSErt27WDnjh3s2L6NdWvXcPLkSQoWLEibNm1o06YNLVq0IE+ePFd93xJYkpKS+Pnnn5k7dy7z5s3j6NGjhOfPT/XqNShf/ibKRWcUPjuOFcuyOHz4EDt37GDnzu1s3bKZTRs34Ha7qVy5Mu3ataNt27ZUr179sh+oRDJLBdD7VAAzQQeQ91mWxfLly/n444+ZO3cucXFx5M2bl1q161KvfgNq1apDnrx5M/04WVEA/87j8bBt6xaWLV3CiuVL2bv3d8LCwmjatCn33HMP9957L7ly5cr044h/OHv2LJ9//jlffPEFv/zyCykpKVx//Q3UqVufeg0aUKFCJZ8dKT5z5gyrV61g2dIlrFyxjNOnTxMZGUnbtm3p0qUL9erVu+oPXSL/RgXQ+1QAM0EHkPecOXOGTz/9lLFjx7Jx40aKRkbSoEEj6tVvyM2Vq2T5GjtvFMC/O3hgP8uWLWH50iWsX7+OfPnC6d69G/369aNcuXJZ/njiG3bt2sWECROYMmUKCQkJVK5SlXr1G1KvXgOKlyhhd7yr5na72bxpI8uWLmHpksXExR3k5ptvpn///tx///3kzYIPZCIqgN6nApgJOoCy3rZt2xg/fjzTPvyQpDNnqFuvPm3b30WNGrW8Ot2UHQXwr+Lj4pg3dzbffTufU6dO0qxZMwYOHMgdd9yhDSQBwO1288033zB27Fh++uknwvPnp1WrO2jTrj1RUcXsjpdlTNNkbewa5sz+mmVLfyN37tw88MAD9OvXj4oVK9odT/yYCqD3BXUBHD9+POPHj+ePP/4AoGLFijz77LO0atXqin5eB1DWWbBgASNHjmThwoUUKFCA21u35Y627ShSJHtOTZHdBfC8tNRUFi36lbmzv2bz5k0UK1aMQYMGMWjQIE0P+6Hk5GTGjh3LO++8w4EDB6hQsRJt291JkybNCA0LszueVx05fJj582bzzTfzOHH8OI0aNeKpp56iRYsWmh6Wq6YC6H1BXQDnzZuH0+nkxhtvxLIsPvzwQ1577TXWrVt3RZ9edQBlXmxsLMOGDWPBggXcdFMF7r7nXho2uoXQ0NBszWFXAfyrXTt3MHvWV/z4w/cULBjBc889R48ePQgJCcn2LHJ13G43U6dOZcSIERw9epTmt7ak/Z0diI4ub3e0bJeens5vixfx1Rcz2bp1M02aNOGVV16hZs2adkcTP6IC6H1BXQAvpUCBArz22mv07NnzP79XB9C127lzJ08/8wxffP45119/Az17P0j9Bo1sGynwhQJ4XlzcQaZMfp8FP/9I2bJlGTVqFB06dNCOSx9kWRZff/01Tz75JDt37qRpsxb06NmbYsX9b21fVrMsi2VLlzB50gT+2Ps7d999N6NGjSI6OtruaOIHVAC9T+8o53g8HmbMmEFSUhJ169a1O07AiouL48EHH6RChQosWriIx4Y9yeQpH9GgYWNNE50TFVWMp599nkkffEhEwULce++91KxZk59//tnuaPIXv/zyC7Vq1aJDhw7kz1+A9ydP45kRL6j8nWMYBvUbNGTylI8YNvxplixZSsWKFenduzcHDx60O55I0Av6Arhp0yby5MlDWFgYffv2ZdasWVSoUOGS35uamkpiYuJFN7kypmkyfvx4ypUrx8yZM+nzYH8+mj6D21u3walND5dU9sZyvPzqm7z17lhSU9No0aIFHTp04MiRI3ZHC2rHjh3j3v/9j2bNmpF0Npk33x7DK6+/xY3lNLJ1KU6nk9tateajT2bwYL8BfPHFl5QrV44xY8Zgmqbd8USCVtAXwOjoaNavX8/KlSvp168fXbt2ZevWrZf83tGjRxMeHn7hVsIPT+Fghz/++IPmzZvTv39/mjRtzieffkHH/91HWFgOu6P5hapVq/PeuPd5ZsQL/PzzAipUqMAXX3xhd6yg9NVXX3HTTTfxw/ff8+TTzzF2/CSqVY+xO5ZfCA0L456Onfjksy9ofuttDBo0iKZNm/L777/bHU0kKAV9AQwNDaVs2bLExMQwevRoqlSpwjvvvHPJ7x0+fDgJCQkXbvv378/mtP7l/KhfpUqV2LZtG6+/+Q6PPPZElpy4OdgYhkHTZi2Y+tF0KlaqTMeOHTUamI3Oj/p16NCB8jdVZMq06bS4taWWLVyDPHny8PDQx3jjrffYsXMnlStXZuzYsRoNFMlmQV8A/840TVJTUy/5d2FhYeTLl++im1za30f9Jk/9hJgateyO5feuu64Az70wimdGvKjRwGzy11G/p599nhdGjqZARITdsfxe9ZgafDD1Y5q1aMnAgQM1GiiSzYK6AA4fPpzFixfzxx9/sGnTJoYPH87ChQu5//777Y7m17744gtuvvnmi0b9cufObXesgJExGticKR9Op2Klm+nYsSNdunQhOTnZ7mgBJSUlhe7du1806tes+a0a9ctCuXLl/sdo4IwZM+yOJRIUgroAHjlyhAceeIDo6GiaNWvG6tWr+eGHH2jRooXd0fySaZqMGDGCjh07UrNWHY36eVmBAgV47oWXePLpEXzxxRc0bNhQuyuzSHx8PI0bN+azzz5j2PCnNernZedHA+vWa0CnTp146qmnNCUs4mVBvf3ygw8+sDtCwDhz5gxdunRhzpw59OrTl/vuf0AjJdnAMAxa3HobJUtdz7NPPUGNGjWYPXs2tWvXtjua31q9ejXt2rXD7Xbz9rvjKH/Tpc8KIFkrV67cPPn0CEqXKcvo0aPZtGkTn3zyiZbaiHhJUI8AStbYu3cvdevW5ccff2TkS69wf+euKn/ZLDq6POMnfkBEwUI0btyYjz76yO5Ifmn69Ok0bNiQ6wpEMH7iFJW/bGYYBp3u68yol1/jl19/pW7duuzZs8fuWCIBSQVQMmXhwoXUqFGDEydPMmb8JOrVb2h3pKBVICKCN98eQ5NmzenatSuPPvooHo/H7lh+wePxMGzYMDp37kzjW5ry1ttjiChY0O5YQatu3fqMHTeJxMTT1KxZkwULFtgdSSTgqADKNfvyyy9p0aIF199QmnETPuCGG0rbHSnohYaG8viwpxgwaAhvvfUWHTt2JC0tze5YPi09PZ1O993H66+/Tr8Bg3niyWcIDQuzO1bQK3X99YybOJkyZW+kZcuWzJw50+5IIgFFBVCuyfTp07n33ntpfEtTXnntLcLDw+2OJOcYhkGHe+7lhZEvM2/ePO666y5SUlLsjuWTUlNT6dChA7O+nsVzL4yi472dtHzBh+TNm4+XX3mDps1bcN999/Hhhx/aHUkkYKgAylWbMmUKXbp0oeVttzP8qWdx6VJuPql+g4aMHP0qP//8M23atNFpYv4mJSWF9u3b8/333/PiqJdp2OgWuyPJJThdLp4Y/gytWrehW7duvP/++3ZHEgkIKoByVT788EN69epFm7btefTx4TidTrsjyb+oVasOL7/6JkuWLKV9+/aXPcl5sElLS+Ouu+5i4cKFvPTK69SpW8/uSPIvHA4Hjzw6jDvvvocHH3yQKVOm2B1JxO+pAMoVmzFjBj169OD2O9ry0MOP4nDo8PEHVatVZ9ToV1m0aBEdOnQI+jWB6enp3HvvvSxYsICRL71CTExNuyPJFTAMg0GDH6Zt+7vo1asX06dPtzuSiF/TO7hckfnz59O5c2eatbiVoY88rvLnZ6rH1OCFkaP54Ycf6Ny5c9CeZNeyLLp268b8+d/w3Isv6UTlfsYwDB4a8ggtW93OAw88wOzZs+2OJOK39C4u/2nz5s106tSJuvUaMGzYUyp/fqpW7bo8M+IFvvzyS1544QW749hi1KhRfPbppzz1zAjq1q1vdxy5Bg6Hg0cfG07DRrdw//33s2HDBrsjifglvZPLvzp+/Dht2rShSNFInnzqWZza8OHXGja6hZ69H+T555/nyy+/tDtOtpo1axbPPPMM3Xv25pYmzeyOI5ngdDoZNvxpihUvQdu2bTl69KjdkUT8jgqgXFZ6ejodOnTg1KkERo56hZy5ctkdSbLAffc/QNNmLejatSvr16+3O0622LRpE126dKHxLU3p8kB3u+NIFsiZMycvjnqZM2fOcPfddwf92laRq6UCKJf18MMPs2TJEka8MJKikZF2x5EsYhgGjw17kuIlStK2bVuOHDlidySvOnbsGG3atCEyKophw5/Wef4CSJEiRXnuhZdYvnwFgwcPtjuOiF9RAZRLmjRpEmPHjmXQQ0OpWrW63XEki+XIkYMXR75M0tmzAT16cn4UOzExkRdHvULOnDntjiRZ7ObKVRgy9FEmTpzI+PHj7Y4j4jdUAOUfVq1axYABA2jb/i7atrvT7jjiJYWLFOH5F15i5cqVDB061O44XvH444+zdOkynnvhJYoW1Sh2oGp9R1vuvPseBg8ezLJly+yOI+IXVADlIikpKTzwwAOULXsjgwY/bHcc8bJKN1emX/9BjB07ll9++cXuOFlq4cKFvP322zzYtz+Vq1S1O4542YABg4mOLk/Xrl05e/as3XFEfJ4KoFxkxIgR/P777zw+/Gld4i1ItLvzbqpWq0737t05ffq03XGyRFJSEt27d6dylarc1aGj3XEkGzhdLh5/4in27dvHM888Y3ccEZ+nAigXrFixgtdff51u3Xtx/fU32B1HsonD4eDxYU9x9OhRHnvsMbvjZIknnniCQ4cO8fiwJ3XeyiBSstT19OjZh7feeoulS5faHUfEp+mVUYCMqd9u3boRXf4m7v3ffXbHkWwWGRVF7wf7M3HiRBYsWGB3nExZuHAhY8aMoVeffhQrXsLuOJLNOnT8HxUqVqJbt26aChb5FyqAAvxl6veJp3Sy5yDVrv1dVK1WnR49evjtVPBfp37vvKuD3XHEBk6nU1PBIldABVBYtWqVpn7loqngxx9/3O4412T48OGa+hVKlix1YSpYu4JFLk2vkEHOsiyGDBlCmTJlNfUrREZF0aNnH95//322bNlid5yrsn37dsaOHUv3Hr019St06Pg/oqPLM2TIECzLsjuOiM9RAQxy8+bNY/ny5fTpO0BTvwJk7AouWjSS4cOH2x3lqjz55JMULlKE9pr6FTKmgvv0HcDq1auZNWuW3XFEfI4KYBDzeDwMHz6c6jE1iKlR0+444iNCQkLo1qM38+bN85vps1WrVjFr1iy6de9FaGio3XHER1SrHkPNWrV58skncbvddscR8SkqgEHsk08+YevWrfTu00/XR5WLNGvegrI33siwYcN8fvrMsiyGDRtG6dJlaN6ipd1xxMf06t2PHTt28OGHH9odRcSnqAAGqZSUFJ555hkaNW5C+Zsq2B1HfIzD4aBX734sWbKEb7/91u44/+rHH39k4cKF9Oz9IE6n0+444mPKRUfTpGlznn32WZKTk+2OI+IzVACD1Pjx44mLi6Nn7wftjiI+qlbtOlSpWo0nnngCj8djd5xLMk2TYcOGcXPlKtSt18DuOOKjevbqw5EjRxgzZozdUUR8hgpgEEpOTmbUqFHc1qo1JUuWsjuO+CjDMOjzYH82b97Ml19+aXecS5o1axYbNmzQMgb5V8WKl+D21m146aXRJCUl2R1HxCdo22cQmjlzJidOnKDT/V3sjiI+rkLFSlSPqcF7773Hvffee8U/Z5omO3fuJDY2ltjYWLZv20bS6dOknD1LWloaoaGh5MiVi1x58lD+ppuIiYkhJiaGcuXKXdU07nvvvUflKlW5uXKVa3l6EkQ63d+FeXNn89lnn9GrV68r/rmkpCTWr19/4ViOO3CA5KQkUpKTMU2THDlzkiNnTq4rWJBq1apdOJYLFy7sxWcjknkqgEFozJgx1Kpdh2LFitsdRfxA23Z38dyzT7Jx40YqV658ye+xLIulS5fy9ddfs2blStatW8eZc+utSoeGUsk0KQHkNAxCgTQg2bI4Dcz99VfeTksDIHfOnFSvVo2YWrW46667aNCgwWVH9rZs2cKiRYt4ZsSLWf+kJeAULRpJ3Xr1GTNmDD179rzscXX27Fk+//xzfv31V2JXrGDb7t2Ypkmow0EVl4vrTZMoMo5lA0i1LJKBIw4Hb8ydy6lzu42LFylCTO3a1K1Xj86dO1OsWLFse64iV0IFMMisXr2a2NhYXnr5NbujiJ+o36AhhQoVYty4cUyYMOGivzt9+jTTp09n3LvvsmnbNkqEhlLHNHna4aBGzpxUdzq57gqmZk+GhrLW4yHW4yF21Sq+XrOGt99+m0rly9N/8GA6d+5M3rx5L/qZ8ePHUyAigoaNGmfp85XA1a79XQx7bCgrVqygbt26F/3dzp07GT9+PNM++ICE06eJCQ2loWUxJCSEGKeTig4Hof9xLFuWxV7LYo3HQ+zJk8R+9x0vfPMNTz35JO3btaP/wIE0adJEyxXEJ2gNYJAZN24cRSMjqVW77n9/swjgcrlofUc7PvnkExISEgDYunUrgwYNoljRogzo358yu3fzY86c/BEayuc5czIsLIxmLtcVlT+A6wyDZi4Xj4eFMfPc/fyUMyc37tnDwAEDiCpShAEDBly4Osnp06f56KOPaN26DSEhIV577hJYatSsTbFixRk3bhwAbreb2bNn06JpU6Kjo/l4zBgeTE1lT+7crA4LY3yOHPQKDaWa0/mf5Q8y1s2WdjjoGBLCK2Fh/JwjB/E5c/JOSAjbvvmGZs2aUaFcOd59990L/y+J2EUFMIgcP36cGTNm0KZNe50uQ65K6zZtSUlJYfLkyTz00ENUqlSJzydOZLDbzR+5cjErRw5auFw4smhkwzAMmrtcfJ0jB3/kysXDHg9fTZpEpUqVGDRwIFOmTCEpKYk72rTPkseT4OBwOGjTtj2ff/45ixcvpk6NGtx5550kLV3KxzlycCBHDl4OC+OGLLyOdD7DYEBoKJtDQ1mYMyeV//yTR4YM4cbSpX12c5UEB00BB5Fp06bh8Xho1foOu6OInylYsBCVbq7C08OHg8fD66GhDAwJuaJRkcwq4XDwQlgYT1sW4x0Onhg3DkJDqVevAYWLFPH640tgue32O/hg8kSaNGlCtNPJ0ly5qJcNH4gNw6Cxy0Vjl4uDpsmg06e555576HjPPYwZO5ZChQp5PYPIX2kEMEhYlsXEiRNp1LgJ111XwO444kdSUlIY8+5bbFy/lioeDxty5mRoaGi2lL+/CjUMHgoN5eOwMFJSU2nb/q5sfXwJDOHh4TRp2pxwh4PY0NBsKX9/V8zh4KuwMD7NkYOfZ82iYvnyfPXVV9meQ4KbCmCQ2L59O7t27aJZi1vtjiJ+5Pc9u+n9wH188/WXvBEWxtJcuSiXhdNj1yLWNLkub16qx9SwNYf4r2YtbuWk281uGy9zaBgGnUJC2BoWRoPTp+nQoQP3d+pESkqKbZkkuKgABom5c+eSI0dOqlePsTuK+ImtWzbz8IC+FDh+jA05c/JwaChOH9i9OMeyqN2wkdaxyjWrWrU6ucLCmHvulC12KnJuNHB6jhzM+uILbm/ZktOnT9sdS4KACmCQmDNnDjVq1iIsLIfdUcQPrFsby6MPDeTm9DQWhYXZPup33m7TZFt6OvXrN7Q7ivix0NBQatapyxwbRwD/yjAM7gsJ4YfQUGKXLqXZLbdw8uRJu2NJgPONV3XxqiNHjmSc96pefbujiB/YsnkTTz3+CA0skx/DwsjvA6N+581zuwl1uYipUcvuKOLn6tZvyOr0dOJN0+4oFzR0uVgYFsbvGzfS+rbbOHPmjN2RJICpAAaBb7/9FoA6dVUA5d/t2bOb4Y8OIcYymR0WRi4fKn8Ac02T6tVrkDNnTrujiJ+rU6ceDsPgGx+YBv6rak4n34eGsjk2ljvbtSM1NdXuSBKgVACDwJy5c6lYsRIFCmj3r1xe8tmzPPP4I5RJT2e+D5a/k5bFb243dRs2sjuKBIDw/PmpVLESc3xoBPC8Gk4nc0ND+W3hQoYNG2Z3HAlQKoABLjU1lZ9+/JG69RrYHUV83MQJY0k4foyvQkMJ97HyB/C9243HsrSUQbJMvYaN+dnjIdlH1gL+1S0uFy+FhPDuu+/y22+/2R1HApAKYIDbtGkTSUlJVK1W3e4o4sPWxq5hzuyveSUkhNI+suHj75Z5PJSMjKJQocJ2R5EAUbVadVJMkw0+OAoI8FBICPVCQujepQtnz561O44EGN98pZcsExsbi9PppEzZsnZHER+VfPYsr7/0Io1CQujvw9fVXQOUrVjR7hgSQG4oXQaX00msx2N3lEtyGgZTQkI4uH8/Tz75pN1xJMCoAAa42NhYrr/+Bp3+RS7r/NTv1NDQLLuWb1ZzWxYbPB6iy5W3O4oEkNDQUEqXut5nCyBAOYeDUZoKFi9QAQxwa9as4cboaLtjiI/auWOHz0/9Amw3TZJNk3LlVQAla91YsRJrfPSDz3nnp4L79uqF5YPrFcU/+e4rvmRaamoqmzdvppxGTeQyZs/6khIuF/18eOoXMi7/BnDjjfowI1mrXLlotrrdPrkR5DynYTDK6WTrzp38+uuvdseRAKECGMA2bdpEeno60dEqgPJPiYkJ/PLTD/R1OHziEm//Zs25DSC5c+e2O4oEmOjo8ngsy2c3gpzXyOmkQmgoY997z+4oEiBUAAOYNoDIv/n+u28x3W56+vjoH2gDiHiPr28EOc8wDPobBnPmzuXAgQN2x5EAoAIYwLZv307x4iW0AUT+wTRN5n31BR1cLor48Nq/87abJqVLl7E7hgSg0NBQSkRFsc3HRwABuoSEkNMwmDRpkt1RJAD4/iu/XLO4uDgiCha0O4b4oNg1qzlwKJ7+LpfdUf5TsmVxyuOhYMFCdkeRAFWwSFHifXgN4Hn5DIMuDgfvjxtHenq63XHEz6kABrCDBw9SoECE3THEBy1a+AvlQkKo73TaHeU/HTr3xhwRoQ8z4h0FChbioI+vgz2vV0gIh44dY8mSJXZHET+nAhjA4uPjNQIol7Rzy2YakLGuyNfFnZua07Es3hJRsCDxdoe4QlUcDnI7ncTGxtodRfycCmCAsiwrowBGaARQLpaWmsreP/8gxg/W/gEXpuZ0LIu3REQU5JDb7Rfn2HMaBlVVACUL+Mc7gJeMHj2amjVrkjdvXgoXLkz79u3ZsWOH3bGyRGJiIsnJyUREaN2UXOz33/fgNk1q+MH0L2QUwFCXi7x589kdRQJURERB0iyLE3YHuUIxlsWa5cvtjiF+LqgL4KJFixgwYAArVqzgp59+Ij09nVtvvZWkpCS7o2VaXFwcoFET+aedO7fjMgwq+8kIYJxlEZH/Or+Yrhb/dP51Ms4PdgIDxDid7P7zTxISEuyOIn7M97cAetH3339/0Z+nTZtG4cKFiY2NpVGjRjalyhqHDh0CtHBe/mnnjh1UcLnI4SeF6pBpav2feNX518l4y+Jmm7NcifPLN9auXUuTJk1sTiP+yj+GALLJ+U9TBQoUsDlJ5p09exaAHDl1DkC52J+7d1PFD9Y6nXcWCMuVy+4YEsDOv0768uXg/qq8w0GIYbBlyxa7o4gfC+oRwL8yTZMhQ4ZQv359KlWqdMnvSU1NJTU19cKfExMTsyveVXO73QC4/OA8b5K9UpLPEu4no38A6YDLD65WIv7r/Ouk2+YcV8ppGORxOi980Be5FhoBPGfAgAFs3ryZGTNmXPZ7Ro8eTXh4+IVbiRIlsjHh1TlfAJ1+stBfsk9qair+NC7stiycTn2QEe85/zrpLwUQIIfDQXJyst0xxI+pAAIDBw5k/vz5/PrrrxQvXvyy3zd8+HASEhIu3Pbv35+NKa+OCqBcTnp6GmF+NALoNgwcTr1Uifc4HP5XAMMM46IZKZGrFdQfqy3LYtCgQcyaNYuFCxdyww03/Ov3h4WFERYWlk3pMud88TM9/rGrTbKPyxVCmp+sdQJwWpaOY/Eq0/QA4E8fl9Msi9DQULtjiB8L6gI4YMAAPv30U+bMmUPevHkv7JwNDw8nZ86cNqfLnPNrWjwej81JxNeEhYWRYneIqxBiGHg8/jQ2I/7m/OukP70hpliW379Pib2Cel5l/PjxJCQkcMsttxAZGXnhNnPmTLujZVrIuUXz56eCRc4LzZGDM340AugCPDqOxYvOF0B/2WpkWRZJHg85cvjTal7xNf70gSfL+cNlf67V+anq1DStEZGLFb/+Brbs/d3uGFcsB5CW4k9jluJvzq+l85e1sb9bFqmmSbly5eyOIn4sqEcAA1nRokUBOHH8uM1JxNeUKxfNRo+HdD/5AFTEMDhx7JjdMSSAnX+dLOonBTD23IhlTEyMzUnEn6kABqjIyEgAjqsAyt+Uiy5Pimmy1U8uexXlcHD85MmAHrEXe51/nYz0lwJompQoWpTChQvbHUX8mApggCpQoAChoaEcP66RE7nYjTeWwzAMYv2kAEYaBslpqTrprXjN8ePHcBoGhfylAAIxtWvbHUP8nApggDIMg6JFi6oAyj/kzJWLklFRF6aRfN35URkdy+Itx48fo4jLhcMPCqBlWcSaJjE1atgdRfycCmAAi4qK4rjWTskl3FihEsvtDnGFos5d+F7HsnjL8WPHiPKD8gew07I45XZr/Z9kmgpgAIuKitImELmk+g0asi49nU1+MAqoEUDxthPHjhLlJ0siPkxPJzxPHho1amR3FPFzKoABLCoqimN605RLaNCwMRHh+Rmfnm53lP+UxzDI63Ry7NhRu6NIgDp+5LBfbABJtSwmWxbdevYkd+7cdscRP6cCGMDKli3LwQP7SfeDN3nJXi6Xi9Z33sXHHg+JfrC7tozDwZ9//mF3DAlAHreb/QcOcKPD998Ov3S7OZqeTr9+/eyOIgHA9494uWY1atQgLS2NP/zopL+Sfe64ox3JwCd+8AGhJrBry2a7Y0gA+vPPP0hJTyfGDwrgONOk2S23EB0dbXcUCQC+f8TLNatatSoOh4OdO3fYHUV8UKHChalfvyFjTdPnz7EX43Dwx/79pKbqiiCStc6/PlZ3Om1O8u/WezwsS0uj/6BBdkeRAKECGMBy585NdHQ0O3dstzuK+Kh2d3Vga3o6X/n4tXZjnE48psme3bvtjiIBZueO7dwYEkI+H14DaFkWL6SnU6xIEdq2bWt3HAkQKoABrkaNGuzSCKBcRrXqMTSo35D+bjfHfHgX5M0OByGGwQ59mJEstmvrFmr4+Aj4TLebWenpvPXee7hcLrvjSIBQAQxwMTEx7NmzG7ePj/CIPQzD4OFHh5EWFsbAtDS741xWmGFQ0eVi504VQMk6Hreb3Xt2E+PD07+HTZOBbjf3dOjAPffcY3ccCSAqgAFOG0HkvxSIiGDg0MeYmZ7O1z68IaQmsHvLFrtjSADZt+9Pn94AYlkW/dPSMPLmZey4cXbHkQDjm0e9ZJmqVasSEhLCxo0b7I4iPqxZ81tpUL8hfX14Kri2w8Hv+/4kMTHB7igSIDZu3IDTMHx2A8hMt5uv09MZN3EihQoVsjuOBBgVwACXO3duGjduzPJlS+yOIj7sr1PBXdLSSPfBNVGtXC5My2LlihV2R5EAsfy3xTR0uXxyA8h2j4cBmvoVL1IBDALt2rVj/bp1nDlzxu4o4sMKRETw1POj+Nk0eSA1FY+PlcAoh4MaISEsW7LY7igSAJLPnmXt2jW088Hp3z9Mk+bp6UTdeCMTJk60O44EKN878iXLtWnTBrc7ndWrNHIi/65mrdo8PeIFPne7eTA1FdPHSmA7w2D1imW6uo1k2urVq0j3eGjjY7tqD5gmLdLSCIuM5McFCyhQoIDdkSRAqQAGgVKlSlG5cmWWLdU0sPy3xrc05bEnnmKq202X1FSfmg5u63KRlJLChvXr7I4ifm7ZksVUCAmhjA+NAO42TRqkpZFWqBA//forkZGRdkeSAOY7R754Vbt27Vi1cjkenQ5GrsBtrVrzzHMv8rlp0j41lZM+UgJvdjgo6Qphmda0SiZ4PB5WLl1COx9a+7fS46FBWho5SpZkyYoVlC5d2u5IEuBUAINEmzZtSExMZNPmjXZHET9xS5NmjHr5NRa7XFRMSeEbH/jwYBgGbQ1Yvmihz1++TnzX1q2bOXXmtE9M/6ZYFk+kplIvOZnrK1fmt+XLKVGihN2xJAioAAaJmJgYIiMj+fWXBXZHET9Sq3Zdpnw8g5LVY7gjOZkHkpNtHw1s5nRy6NhRtm3bamsO8V8Lf/mFcKeTmjaPAK7yeKiemspbpsnIUaNYsmKFTvci2UYFMEg4HA569uzJgp9+4OzZJLvjiB8pVLgwo197i8pVqvKZx0Ol1FTm2zQa+J3bzQC3G5fLxdzZX9uSQfxbcnIy3383nwSPh7bp6Ryw4byX50f96iYnk7tSJWLXrWP48OG6zJtkKxXAINKnTx+Sk5P5+acf7I4ifibpzBl27tjOkEceoUrTprRJTqZOaiofpaeT4uURwRTL4pP0dOqlpnJ7cjI333ILjzzyCAt/XUBCgk4KLVfnlwU/kZyczAcffMCG/Pkpm5xM15QUVno8Xl9WsN80eSY1lev/Muq3fNUqKlWq5NXHFbkUFcAgUqJECdq0acPc2bO0fkquyvfff4vb7eaRRx7hm+++Y+7cueRv1IiuKSkUT0nh8ZQUfs/ikZS9pskTqamUSEmhS0oKeRo0YPbs2Xz3448MHToUy7L44btvsvQxJbBZlsWcWV9x++2306NHD7bs2MELo0fzW9Gi1Dl7lhppaXyQlsbZLHx9NC2LH91u2qekcP3Zs7zjcnHPgw+yacsWjfqJrVQAg8yAAQPYs2c3mzdpM4hcGcuymDdnFnfffTdFixbFMAzatGnD9z/9xM6dO+k6eDCTc+akbFISTVNSeDo1lVnp6ewzzSv+oGFZFvtNk9np6TydmkqzlBTKJCUxMSyMLoMGsWPHDn5csIB27dphGAaFCxfmnnvuYe7cWZg+euk68T3btm5h166dDBgwAID8+fPz+OOPs2vvXr755hsimzWjd1oaxVJSuD85mbfS0ljsdnP6KgphumWx3uPhg7Q0+qekEJ2WRsvkZH4vW5Zx48cTd/gw7733HuXKlfPW0xS5IoaloaBrlpiYSHh4OAkJCeTLl8/uOFfENE2io6Mpef0NPPPsC3bH8RknT57grnatAfh6zjdcd51OvnpebOxqHn14MIsWLaJRo0aX/J6zZ88yc+ZMvvryS2JXreLQsWMAFAwJoQZQCchrGOQ0DEKBNCDZsjhjWWwCYoGj507uXCQigpiaNbmrQwc6depErly5LvmYy5Yto379+rzy+lvUqlUnq5+2BKCXRj3Prh3b2bNnD47LnP9v7969TJo0iYU//8z6jRtJTk3FAMqFhVHD4+EGh4McQE7DwEHGEoVk4IhlEWsYbHS7STVNHA4H5cuUoU7DhvTo0YN69eph+NBpZ3zdkSNHKFKkCACHDx+mcOHCWXr//vj+ndVUADPBXw+gt956i8cfH8bML2cH1VnmTdMkIeEUx48f58TxY5w4cYL09HQ8Hg+nT59myuSMSy5179GbvHnz4nQ5cTpd5M2bj4iICCIKFqRAgQhCQ0NtfibZa8Qzwzl29AibN2++4jewuLg4YmNjiY2NZc3q1WzbtImzZ8+SkpZGaloaYaGh5AgNJVeuXNxUqRIxNWsSExNDTEwMUVFRV/Q4lmVRtWpV8uYLZ+RLr2b2aUqASzh1invubsuoUaN47LHHruhn3G4327Ztu3Asx65cycEDB0hOSSElNRWPaZIzLIwcYWFcd911VKtVixo1ahATE0PVqlXJnTu3l59V4FIB9D5bCuDVlg7DMFi7di2lSpXyUqJr468H0MmTJylevDjt77yb3g/2tztOlrEsi6NHjrBz53b2/v47x44d5fjxYxw5cZhjx4+RcPwUpvtv04UGGCEGlsOClHNfywWGx8ByW+D55+PkCs9NRMEIChUoTKGIwkRERBBVrDjlykVz/Q2lCQkJ8fpzzS779v1J9wfuY8yYMfTr18/uOP8wefJk+vTpwwfTPuGGG3TiXLm8KR+8zxczP+PAgQNERETYHUf+gwqg99my+vTUqVO8/fbbhIeH/+f3WpZF//798Xgu8U4s1+S6665jyJAhvPnmm9x59z0ULOh/5506X/Z27NjGzh072L5zGzt2buX0ydMAOAs4MUoYeCI9WOUsiAIiufjXIkAoWFhw5NyfAfaCVfjc5yITOAnEAfEZv56NT+JsXBL74/fhjHNibDNw73eDCc4QJzeULc1NN1YkuvxNfl8KP5g0kWLFitG9e3e7o1zSAw88wKhRo/hg0kRGvvSK3XHER504cYIvP5/B4MGDVf5EzrFlBNDhcHDo0KErbvR58+Zlw4YNPndpHH/+BJGQkMANN9xAw0a38PAjj9sd54ocPLCfZcuWsHrNSrbv+EvZK+zErGFi1bAghoxbFHA1y23+WgAPA1f7YTMJ2EDGYrY14FzjxLPdc1EprFqpOnXrNaBylap+sfNv29Yt9O/bi2nTptG1a1e741zW9OnT6dy5M2PGvU/FSjfbHUd80Ltvv8EvC35m797fue666+yOI1dAI4DepzWAmeDvB9Abb7zBsGHDmPbRZxT3wUsPeTwetm3dwrKlS1i87FcO/nEAI8yAxmDVyUTZu5TMFsBL+Xsp/NmJJ85Dzjw5qVunAfXrN6RWrTrkyZs3Cx4sa1mWxSMPDyI1JZmNGzfidDrtjnRZpmlStWpVHE4Xb70zVgvt5SJxcQfp2rkTI0e+yLBhw+yOI1dIBdD7fLYAut1u5s2bx5133ml3lMvy9wMoJSWFsmXLUi76Jp597kW74wAZZ+mPXbOKpUt/Y+nyxZw+eRpnQSeeNh5oC7QAvLGu2hsF8O8sYB0wF5xznHjWe3C4HFSuUpUG9RtTr14DIqOivPDAV2/1qpU8/ugQ5syZQ9u2be2O85++/fZbWrduzcuvvkntOnXtjiM+ZNSLz7Fl80Z279592R3l4ntUAL3P5wrghg0bmDZtGp988gkJCQmkpaXZHemyAuEAmjJlCj179mTCpKlER5e3LceOHduZM+srfv7lB9JT0nHe5MTTzgNtgNqAtwegsqMA/t1+YD4Ycwz4Faw0i/KVKnBX+3to3LgJoWFh2RDin0zTpG+fHhQqGMGSJUv8YkTNsiwaN25M/KFDTJw07bKn+JDgsnv3Lvr07MqECRPo06eP3XHkKqgAep9PFMATJ04wffp0pk6dyoYNG2jSpAn/+9//aN++PQULFrQ73mUFwgHkdru5+eabyZ07L6+9+U62vtmnpqbw6y8LmDXnC3Zu3YGzuBPPgx74H1A222JksKMA/tVp4DtwTHRg/mKSJ39e2tzenjZt22f7qOCCn39k5Asj+O2332jQoEG2PnZmLF++nHr16jH8qWe5tWUru+OIzSzL4onHh3LyxHG2bt3qF+tu5f+pAHpftv4fsXv3bp5++mkiIiJ4/vnnWblyJVOmTGH+/PlUrFiR+++/n40bN/Luu+9SoUKF7IwWtFwuF6+//jp33HEHP/7wHS1vu93rj3nw4AHmzZ3N/G9nk5SQhNHCgJfA09pj0750H5AX6AhmRxO2w5kJp5k5bTqfffYxtevW5c7291CzVm2vj2wlnDrFuDHv0L59e78qfwB169alQ4cOjB/7HrVq1yF/fi32D2YLfv6RVStXMHv2bJU/kUvI1hHA2rVr07FjR0qWLMl9991HsWLF6NSpE507d6ZixYoAhISEsGHDBr8ogIH0CaJLly7MmTOHKR9O99ppYdatjeWzGR+zeuVKHOEOzB4m9AVu9MrDXR27RwAvJQn4DJxjnHg2eCgcVYS777yXdu3vJCwsh1cecuQLI4hds5pt27ZStGhRrzyGNx0+fJgKFSpQuUo1Rjw/0u44YpMTx4/To9v93NaqFTM++8zuOHINNALofdm6UObo0aNUr16dWrVqYVkWjRo1omnTpn5R9gLdO++8Q65cuXjjtVeu+PqtV2rXzh088ugghg4ZSGzyavgAzIMmvIFvlD9flRvoBZ51HlgOR5oeZsLE9+h0/918M38uHrc7Sx/ut8ULWfDzj4wZ855flj+AIkWKMG7cOBb+uoCFvy6wO47YwLIs3nzjVUJDQxnz3nt2xxHxWdlaAN966y26devGXXfdxYwZMyhYsCCdO3emePHiPProo6xbt84vFpwHogIFCjBp0iRWLF/Kjz98lyX3efDAfl54/mn69OrGhlPr4Esw15nQHdBmvCtnAHWAj8HaZnGqyUlef3U0D3T/H4sW/polhT0hIYG333yNtm3bct9992X6/uzUsWNH7rrrLt556w1OnTppdxzJZgt+/pGlSxYzceJEn15DLmI32zeBnD/dy7Rp0/juu+9wu9089thj9OzZk3LlytkZ7T8F4hByVkwFHz92jI8+msr8+bMxCht4nvdAN3x7fZ8vTgH/m7VgDDewfrS48aZy9O0ziOoxNa757ka+MIK1savZutU/p37/TlPBwUlTv4FDU8DeZ/u5ElwuF3feeSdz5szhwIEDvPrqq3zzzTeUL1+eypUr2x0v6GRmKvjMmTNMnjSBTvfdzfyFszFfMvHs9kAvfLv8+aPqYP1gwS+wJ89uHnl4EI88MoidO3Zc9V39/9TvmIAof6Cp4GCkqV+Rq2N7AfyrwoUL8+ijj7J582ZWrFjhd7sQA0GBAgWYPHkyK5YvZcZn06/451YsX8YD3e7lsy8/Jn1IGuZeEx4DcnovqwBNwFxpwlewIWEdfR/szoRx75GamnJFP35g/35ee+Ul2rdvT6dOnbwcNnt17NiRDh068MZrr7Bv3592xxEv++LzGZr6FbkKtk8B+7NAHkJ++umneemll3jp5depU7feZb/vzOnTjBnzNj989y3GrQbWJAtKZmPQrOJvU8CX4gbeBONZg8iiUTw5bMS/Xhv3zJkzDOrfh9DQEFatWkV4eHj2Zc0miYmJ1KlThzNJZxk3fpJPXnZPMm/VqhUMf/wRHnvsMV5++WW740gW0BSw99kyAli9enVOnrzyxdkNGjTg4MGDXkwkf/fCCy/Qpk0bRr44gj//+OOS37NyxXIe6P4/flr6PUwG63s/LX+BwgU8DtZai0OF4xk08MHLjgZ6PB5GvfgcJ0+eYN68eQFZ/gDy5cvHvHnzOJ2YyIvPP4vH47E7kmSx/fv38eJzz3LbbbcxatQou+OI+A1bRgAdDge//PILBQoUuKLvr1evHhs3bqR06dJeTnZ1Av0TxOnTp6lTpw6JiacZN3EyefNmPMczp08zduw7fP/tNxmjfpMtKGFz2MwKhBHAv3IDb5wbDYyM4qknnqNCxUoX/vr9CeOYOWM63377LS1btrQvZzZZsGABLVu25O4OHek3YLDdcSSLnDl9mgH9e5MzRw5WrlwZsB9kgpFGAL3PtqX5zZo1u+JNBjo1jD3y5s3L3LlzqVmzFi889wwvv/IGa9as5pXXR5KQcipj1K+HlXGaEvEtLmAYWG0sDnWLZ+CAPnTs2InuPXuzeNEiPvv0Y958882gKH+Q8Xrz1ltvMXjwYEqXKZstV7wR7/J4PLz4wrMkJCTw808/qfyJXCVbCuDevXuv+meKFy/uhSTyX8qUKcOXX35BixYt6N+3Fzt37gicUb9gUAHMZRkn3f782c9YvHQhxw8fo1u3bgwZMsTudNlq4MCBbNiwgTdee5nixUv86/pI8X3vTxjLmtWr+P7777nxRp1RXuRq2VIAS5UqZcfDyjWKiYmhfIXybN2yFd4A62GN+vmV86OBrSziW8fhNJx07tw56EbWDcOgS5cufPzJxzz26BDeeXccN5aLtjuWXINPPprG5zM/I7p8NDVr1rQ7johf8qnTwIjv2bVrFzXq1GDH/h3wHTAUlT9/VRlYB1Ydi9ta3cakSZPsTpStpkyZQvMWzXFXd5MancLDjwxk7+977I4lV+nzGZ/yweSJ0BV2H95NTO0YdlzD+S9Fgp0KoFzWjz/+SEytGP6w/sCzygPBsVwssBUE8ycTdy83ffr0YeCggaSnp9udyqvcbjdDhgyhZ8+euLu5MReamAtMkq8/y5Ch/dm793e7I8oV+urLzxk/7j14EpgKnlUe/nT+SY3aNfjuu6y5hKVIsFABlH+wLIu3336b21rdRlLdJNwr3eDbV+WTqxECjMu4jZswjha3teD48eN2p/KKEydO0LJVS94d8y6MASYCocB1GUX4TLEzDH6oL7t377I5qfyXGZ99wph334JHgZFkzESUBc8KD2cbnKX1Ha154403suTa2CLBQAVQLpKamkqPnj14+OGHsR6xMOeZoM11gakfWD9bLNmwhOq1qrNlyxa7E2Wpbdu2EVM7hkVrF2H9aMEALl6+UAjMX03Olk7ioSF92b5tq11R5V9YlsVHH05h4vix8DTwKhf/O+YDc46J9bjFo48+ygNdHyAl5cquhCMSzGwvgF27dmXx4sV2xxDg7Nmz3NHuDj769CP4iIwXWqfdqcSrGoNntYeDuQ9St0FdVq1aZXeiLBEbG0vdBnXZH7Yfz2oPNL3MN0aAucAkpUIKQx7uz9Ilv2VrTvl3brebt958lakfTMoY9XuRS69BdgKjgU/h0y8+5fY2t5OUlJStWUX8je0FMCEhgebNm3PjjTfy0ksvZesVPxYvXkybNm2IiorCMAxmz56dbY/ta86cOUOrO1rxy2+/YH5rQhe7E0m2uQE8v3k4W+EsTZo3YenSpXYnypTly5fTuGljztx4Bs8SD/zX+ePzZ0wHp96aytNPPc4nH03TNKIPOHXqJEMfGcD8b+fA+8BTV/BDncD83mTxisW0vL0lp0+f9nZMEb9lewGcPXs2Bw8epF+/fsycOZPrr7+eVq1a8eWXX3p9cXpSUhJVqlRh7NixXn0cX5eQkECL21qwdM1SzB/My4+WSOAKB88PHlJiUmjesjm//vqr3YmuyeLFi2l2azOSqyTj+ckD+a/wB/MAXwHPwgeTJ/LC809rGtFGe/bsps+D3diyfzPWLxb0voofbgyeHz2sWL+CZrc249SpU96KKeLXbC+AAIUKFWLo0KFs2LCBlStXUrZsWbp06UJUVBQPP/wwu3Z5Z4F2q1atGDlyJHfeeadX7t8fJCYm0rxlc1ZvWY3nZw80sDuR2CYPmN+YpNVP47bbb+OXX36xO9FVWbRoEbfediuptVMxvzMh71XegQN4DvgCFq9YyIBBvTly+HDWB5V/9dvihfTv35PjhY9hxprX9ppUFzwLPKzdsZamLZqSkJCQ5TlF/J1PFMDz4uPj+emnn/jpp59wOp3cfvvtbNq0iQoVKvDWW2/ZHS/gJCUlcVvr21i3fV1G+atldyKxXa6MBfXuxm5at2nNkiVL7E50RZYvX06r1q1Ir5+esXEpdyburAOYS03+PLuX3n27smnjhizLKZdnmiYfTvuAZ58eTtod6ZhLTSiZiTusAZ5fPGzcvZGWt7fkzJkzWZZVJBDYXgDT09P56quvuOOOOyhVqhRffPEFQ4YMIS4ujg8//JCff/6Zzz//nBdeeMHuqKSmppKYmHjRzV8lJyfTum1rVq1fhed7D8TYnUh8Rg4wvzZJq5VGy9tb+vzGkDVr1tDithakVk/FnG1Cziy406rgWePh9E2neWhwPyaOH0taamoW3LFcysED+xk0+EGmTZkMLwAzrcyV+POqZkwHr9m0htvb3M7Zs2ez4E5FAoPtBTAyMpLevXtTqlQpVq1axZo1a+jbty/58uW78D1NmjQhf/789oU8Z/To0YSHh1+4lSjhnxfDdbvd3NXhLn5b/huebzxQx+5E4nNygTnPJPXmVJq3bM6mTZvsTnRJW7dupdmtzUipkIL5TSZH/v6uMFi/mlgjLWZ+NZ0evbuwdWtgnSrHbqZp8uUXM+ne4362n94Gi4BnyNqrDdUEz3celq5eSru72gX8ic9FrpTtBfCtt94iLi6OsWPHUrVq1Ut+T/78+dm7d2/2BruE4cOHk5CQcOG2f/9+uyNdk0cffZQffvghY7Skkd1pxGflAc+3Hs5ef5bb297OsWPH7E50kePHj9OqTSuSiifh+c5z9Wv+roQLGA7WWov4iIMM7N9bo4FZ5Pyo39j33ia9TzrmJo/3Xo/qgznXZMGCBQx5eIiXHkTEv9heALt06UKOHDnsjnFFwsLCyJcv30U3fzNlyhTeeecdrHctuNXuNOLzwsEzx0N8Ujx3drjTZ0ZP0tPTubvj3RxMPIhn7lXs9r1WFcFcodHArODxeC6M+u04P+r3Dlk7enspTcEaazFu7Djef/99Lz+YiO+zvQDa6cyZM6xfv57169cDsHfvXtavX8++ffvsDeYlS5cu5cG+D0IfoJ/dacRvlATP1x6WLlvK4IcG250GgKGPDGXx4sV4vvTA9dn0oOdHA2MzRgMH9OvFqJEjiI+Ly6YA/s2yLJYvX0qPXp0zRv16p+Px5qjfpfQB+kP/Af357Ted9FuCm2EF8RlPFy5cSJMmTf7x9a5duzJt2rT//PnExETCw8NJSEjw+dHAffv2Ua1mNRKiEzJ2/IbancjHHAGKnPv9YaCwjVl81WSgN4wfP56+ffvaF2PyZHr37g3jAbtiuIEPwPmcE45B23Z30blLNwoUKGBTIN+2adMGJkwcw9aNmzEaObBeNaG2TWHSwXGrg/At4axbvY5SpUrZFET+zZEjRyhSJONF+fDhwxQunLUvyv70/u0tQV0AM8tfDqCzZ89Sp0Edtp3Yhnu1GwrZncgHqQBemcHgHO9kwc8LaNy4cbY//JIlS2jStAnuXm4Yl+0P/09ngXfA8YoDV5qL/93bmY733kfu3N6ez/QPe3/fw/uTxrFi6TIclR2Yr5jQkqzd5HEtjoGrlovofNGsXLpS/14+SAXQ+4J6CjgYWJZF9x7d2bJjC+45Kn+SSW+C1diifYf2/PHHH9n60Pv27aPtXW0x65sZa8Z8QS5gOJi/m6QNTOPjGVP5X6c7+fSTjzh16qTd6Wyzc8cORo18jh7dO7M6biV8CuY6E27D/vIHUBDcc91s37OdB7o9oEv/SVBSAQxwL7/8Mp/P/BzzIxOq2J1G/J4LzJkmZ8LP0Lpda5KSkrLlYZOTk7mj/R2czn0a8wsTQrLlYa9cAeBVsHZZnOlwmskfTqDD3W0YNeo5tm7ZHBQFIy01lR++/5YH+3Xnwd7d+HXLz/AeeLZ7oBO+925TCTyfePj6y68ZOXKk3WlEsp2mgDPB14eQY2NjqVW7FuYTJuj17d9pCvjqbAFHTQcDew/knXe8Pxz3yCOP8PbYtzFXmVDZ6w+XeceAqeAc58Tzh4fS5cpwV/uONG3Wgpw5s+JM1b4jLu4gc+fMYv53c0g6dQajuYE10ILWZGyc8XXPg/GCwYrlK6hVS5dD8hWaAvY+FcBM8OUDKDU1lao1qrIrZBeelR7fGzHxNSqAV+9t4OGMa/A2auS9rZxLly6lYcOGWK9a8KjXHsY7TOAHMMYaWN9a5Mydk6a3tKBe/QZUj6npN6fA+rujR46wfPkSFi3+lbVr1uDI58DsaWZsyrnR7nRXyQ3Ouk5KJ5Vm49qNfvtvEmhUAL1PBTATfPkAevrpp3nplZewYi3/GDGxmwrg1TPB2dhJ8fjibNmwxSsL6ZOTk6lYpSL7IvbhWeIBZ5Y/RPb5A3gfnJ878ezxEJIjhBo1alG/XiPq1mvg0zuILcti966dLFu6hN+WL2TP9t3gBEcDB+YDJvyPjPWQ/moLOKo7eHzo44wePdruNIIKYHZQAcwEXz2A1qxZQ+06tTGfNeFZu9P4CRXAa7MLHFW8NxV8Yep3vQnls/zu7WEBO4C54JjrwFxuggXlKpSnTs16REeXp1x0eQoWtG/HlsftZt++P9mxYzvbtm5hyYrFnDh8PGOkr5UJbYFWwHW2Rcx6o8F4WlPBvkIF0PtUADPBFw8gTf1eIxXAa/c2XpkK9uup36txFPgWmAvORU48xz0A5IsI56boipQvdxPloqO58cZoCkRE4HRm7TBoWmoqBw8eYMeO7ezcuYNtO7ewZ9cu0lMyrvriLOfEc5sno/Q1JHDPIaqpYJ+iAuh9KoCZ4IsHkKZ+r5EK4LXzwlRwQE39Xg0L2A+sAWLBWGPgiHVcKIUOp4N8BfIRUbAgha8rQkREQQoWLESBiAjy5MmDy+XC6XTidLqwLAu3243H48HtTufkyZOcOH6cY8ePcuz4UY6eOMKJY8c5m3j2wsM7b3ThqeGGGKAGUA3wjZe27KGpYJ+hAuh9KoCZ4GsHkKZ+M0EFMHOyeCo4IKd+r9X5UrgBOAjEn7vFgTPOCXHgOerJ2HDyL4wcBs6iTswoCzPKA1FA5Lnb9QRf2bscTQX7BBVA71MBzARfOoA8Hg+Vq1dmh3OHpn6vhQpg5r0NPAzLly+nTp0613w3q1evpnbt2oE/9ZuV3GRclcR97pZOxnn3XGS8FriA3PjGSZh93bmp4LLJZdm8fjMulz+cyybwqAB6n6+dmlOu0SeffMLWjVvxTFD5E5sMBmcVJ488/sg1n/jYsiweHfYozopOeDiL8wUyFxmjdwXI+PBSjIyRvUJAfiAPKn9XygWeiR52bNnBhx9+aHcaEa9RAQwAKSkpPPnskxh3G6AZC7GLAzyjPSz7bRnffvvtNd3Fjz/+yOJfF+N+yR086/7E91QH416Dp0Y8RXJyst1pRLxCBTAATJgwgfiD8VijNJsvNrsNHI0dPDb8MUzzPxal/Y1pmjw2/DGc9Z1wh5fyiVwha6TFkcNHGDt2rN1RRLxCBdDPJSYm8vyo57F6WBBtdxoJegaYL5ts27SNTz/99Kp+9PPPP2fTuk14XvZoulLsVxas3hYvvvQip06dsjuNSJZTAfRzr7/+OolnEmGE3UlEzqkDRnuD4c8MJzU19Yp+JC0tjSeefgLHHQ5o4OV8IlfqGTiTeoZXX33V7iQiWU4F0I8dPnyY1958DXOwmbHoW8RHWKMsDu47yMSJE6/o+ydPnsyfv/+J+dLVTRuLeFUkmENM3nz7TeLi4uxOI5KlVAD92MiRI0kPSYdhdicR+ZsKYHW1eG7kc5w+ffpfvzUpKYlnX3gWOgM3Z088kSv2GLhzuHnhxRfsTiKSpVQA/dSff/7JhIkT8AzzZJz6QcTXPA8JiQn/eWLo9957j5MnT4LeX8UX5QfPkx4mTZrE77//bncakSyjAuinJkyYgJXLgkF2JxG5jBJgdjd5d9y7pKenX/Jb3G4374x9B7OLmXE1ChFfNACMfAbjx4+3O4lIllEB9EOpqalMmDwBTzdPxtn9RXxVPzgaf5Q5c+Zc8q/nz5/PoQOHYEA25xK5GjnB08PD+1Pe13kBJWCoAPqhL7/8klPHTkE/u5OI/IfK4Gzg5L1x713yr98b9x7Ous6M69CK+LJ+kHgikc8//9zuJCJZQgXQD7079l0czR0675/4BU9/D4t/Xcy2bdsu+vrOnTv55adf8PT32JRM5CqUAcdtDt4Z++9rWkX8hQqgn1m3bh2rlq/C7K/TZYifuAtchV3/WD81YcIEXAVd0MGmXCJXyexvsm71OlavXm13FJFMUwH0M+PHj8dVzAVt7E4icoXCwN3LzZQPp3DmzBkAzp49y+Spk3H3dEMOm/OJXKnbwVXSxbjx4+xOIpJpKoB+5NSpU3w8/WPcD7rBZXcakavQB86eOXvh8nAzZszgdMJpeNDmXCJXwwnuvm4+/exTTpw4YXcakUxRAfQjH330EalpqdDL7iQiV6kUcAcZp3wxTd4Z+w6O2x1wg93BAoAb2Ah8BLwDvAI8D4wEXgfGAHOAA4BlU8ZA0hPSPelMmzbN7iQimaJxJD8y9eOp0BaItDuJyNWzHrTY2nors2fPZuPajRmlRK7eVmAlsAacK8HaBGZaxl/lcEKoA8IMAxOLVBNSTUg/t2TYVQA8NcGqCdQA6gMFbXkW/qswcBdM+WgKQ4cOtTuNyDVTAfQTBw8eZP2a9fCw3UlErlEzcOZ1MmHCBJy5nXhu1e7fK5YMzATnu+BZBwZQJsygjsdJjNNJTE4H1ZxO8hjGP37UsiwOWhaxHg+xZ0xW/+Jh1S8eTqSD4QLrHjLOw1iPjDuW/2TdZbHl3i3s27ePkiVL2h1H5JqoAPqJ+fPnYzgNrFaawxE/FQbmbSZLf1iK2dLU5o8rsRuYAM5JYCZCs1AnA3KG0sTpJO8lyt6lGIZBccOguMNBu3NfsyyLA6EWX7jdvPdVGn98ZuGsCJ7BwH1AHi89n0DREowQg3nz5jFggM5iLv5JawD9xOy5s3E0dMB1dicRuXZWG4uziWexGuiDzL86CEZ74EbI9w4MTQ5hV+7c/BCWi7Yu1xWXv8sxDIMSDgdDQ0PZE5qbH3Lm5PadToy+4CwKjCZjbaFcWjgYjQ1mz51tdxKRa6YC6AfOnDnDggUL8LTVlJn4udvJmGZU/7s0C5gGzvJQ8FuDqTlycChHHl7NkYMyDu+8XDsMg1tdLubmyMUfuXIzOC0E4ylw1gK2eOUhA4LZ1mThrwtJTEy0O4rINVEB9AM//fQT6anpGRtARPxZBBlrzX61O4gPOgiO24Hu0CnVxY6w3HQLCSFnJkf7rkZJh4M3c+Rgec5clN5i4KiKRgMvpw240938+OOPdicRuSYqgH5g7ty5uCq4oIzdSUSywJ3Az0CS3UF8yEcZo34RCwzm5czJxzlycl02Fr+/q+10sjE0N485Qv9/NHDbf/5YcLkeXJVdzJ071+4kItdEBdDHeTweZs+fjbutPoJLgGgLpJBRAoOdBYwAusK950b97nD5xt68HIbBy2FhLM+Zixs2GzhrAyvsTuVb3G3dzPlmDm63Xp/F/6gA+riVK1dy6tgpXfpNAseNQDQQ7AMnJjAEeAFGh4Yy3eZRv8up7XSyOiw3NVMdOJqi4v5XbSDxRCLLli2zO4nIVVMB9HGLFy/GmdcJte1OIpKFbgV+szuEjSzgITDehXFhYTwRFmZ3on+V3zBYEJqLZm5nxjrFhXYn8hE1wJnfyeLFi+1OInLVVAB9XGxsLFQHnHYnEclCNYBdQILdQWzyHDAGxoeF0S801O40VySXYTAvLCe34MTRGlhjdyIf4AArxmJNrP5jiP9RAfRxK2JX4InR6V8kwMSc+3WdrSnsMRV4AV4JDeVBPyl/54UZBnPDchLjduBsARy0O5H9zBiTlbEr7Y4hctVUAH3YiRMnOLD3wP+/WYoEivJALoJvFGkfOAdC9xAXj/v4tO/l5DYMvg/NRYEkA0cvdE7HGDi0/xBHjx61O4nIVVEB9GFr167N+I0KoAQaJ1ANiLU7SDaywNEDCqUbvBXm39fBK2AYTHHlwPwe+NDuNDY79/ocGxtMB7MEAhVAHxYbG5uxAeRGu5OIeEEMwVUAJ4G5AKa5chDug7t9r9YdLhedQ1w4BxHcU8GlMzaCqACKv1EB9GFr1qzJGCXRv5IEohiCZyPIn+B4GHqEuGjpI+f5ywrvhuWgQGqQTwUbYFW3WL1mtd1JRK6KqoUPWxG7Ak8NbQCRABVEG0EcfaBwusGbfj71+3fXGQYfnJ8K/tTuNPYxa2gjiPgfFUAfpQ0gEvCCZSPIZjB/hDedYQEx9ft3bVwubg9x4nyJ4B0F1EYQ8UMqgD5q9+7dGb+5yd4cIl7jJKME7rI7iJeNh4IhcHcATf3+3WBXKJ6twHK7k9ikQsYvu3YF+sEsgUQF0EfFx8dn/CbK3hwiXhUJxNsdwotOg3Mq9DNCCQ3A0b/zWjidXB9qwFi7k9gkMuOXC6/bIn5ABdBHxcXFYTgNKGR3EhEvigLi7A7hRZ+AlQJ9QkLsTuJVDsNgkBGK43PgiN1pbFAAjFCDuLhAPpgl0KgA+qj4+HhcRV36F5LAFsgjgBa43oW2LifFHYH/P3K3kBBcJjDF7iQ2MMAV6dIIoPiVwH9V8lNxcXFYUcG6olqCRhRwCAjEze5rwL0dBrj863Jv16qAYdDJ6cI10e4k9rCiLI0Ail9RAfRRcfFxuCPddscQ8a5IwAQCcfPkcghxQGOn0+4k2eY2pwv3H8Axu5NkP3ekm4PxwXxGbPE3KoA+an/8fm0AkcB3/hgPxJmzWKjkchASwJs//i7mfNkNxotiRMGB+AN2pxC5YiqAPiouLu7CzjKRgHX+GA/AmbOQ5VDbCp7RP4AyhkEeF8FZACMhPi4QP8lIoFIB9EFut5uTR06qAErgKwIYBN4IYBKk74GYINj88VcOw6C6wxn4J/e+lEhIOJ5Aamqq3UlErkhwvTpdwtixY7n++uvJkSMHtWvXZtWqVXZH4tSpU1iWBQXtTiLiZS4gP3Dc5hxZbT1g/mVKNIjUshyEBONV0c69Xp88edLeHCJXKKgL4MyZMxk6dCgjRoxg7dq1VKlShZYtW3LkiL0nsnK7z23+CI7NgxLsQoBA2++0HlwOqBhkI4CQUXrT44ATdifJZudO9Xjh9VvExwXfq9NfvPnmm/Tu3Zvu3btToUIFJkyYQK5cuZgyxd4TWV14AQncK0eJ/L9ALIAnINxFQF/943KKnH/Op2yNkf1UAMXPBG3FSEtLIzY2luHDh1/4msPhoHnz5ixfbu8FLdPT0zN+E7T/OjYw//L7QDwlia87SWBdQeIYuEw4Ypr//b0B5qx17vylB4A8tkbJXqczfjl06BC5cuWyN0sAOHr0/1+IzSD8/yg7BG3FOHbsGB6PhyJFilz09SJFirB9+/ZL/kxqaupFC3wTExO9kk0jgDb46xq0SralCF7vnLsFkMNAEXeS3THs09juAPaoW7eu3RECzvHjxylatKjdMQJOUE8BX63Ro0cTHh5+4VaiRAmvPI4RhNNGIiIikn2CdoypYMGCOJ1ODh8+fNHXDx8+fNlPGsOHD2fo0KEX/pyYmOiVEuhynftnSc/yu5bLiQY2n/t9BPpolJ2qAR2B4f/1jX7kJSg8FjaF5bY7SbZb5fHQJiUFfgPK2Z0mGy0F7oLly5dTunRpu9P4PdM0OX48Y2omOjra5jSBKWgLYGhoKDExMSxYsID27dsDGQfcggULGDhw4CV/JiwsjLCwMK9nCwk5v5rY6w8l57mAinaHCGLXAYXtDpGFCkG6AYWDcBdwzvPrtYoTWP+m/yVvxi+RkZEULhxMT9x7NO3rXUFbAAGGDh1K165dqVGjBrVq1eLtt98mKSmJ7t2725rrwgigCqAEAzeB90oUCafS4UyYRZ4gW9Lxh2lmjKAXsjtJNju/dNsVaAezBKqgPlLvvfdejh49yrPPPsuhQ4eoWrUq33///T82hmS30NBzJwBMsTWGSPZI5cIpNAJGDFjAeo+HBkFWCGJNk5AykB5ss9/n9gdemMER8XHB9cp0CQMHDrzslK9dwsPDcYW4cB/REKAEuBQggYxLwgWSCuAIyShDDezOks1WGB7Sg3Ej7OGMU4lFRETYnUTkigTfAhU/4HA4KFi0IMTZnUTEy85fAzjQrnsdAsbNEOvx2J0kW6VbFpvdJsTYncQGcVCgSAGcQXj5P/FPKoA+KjIy8v/fHEUCVaAWQMBTG1Y4g6sAbjFN0k2CswDGn3vdFvETKoA+qlRUKYy44Fo8LkHo/Ch3lK0pvCMGdqdanDl/ZYwgEOvxZLyrVLU7iQ3ioGRUSbtTiFwxFUAfFRkZiSs+6JdoSqCLB8LIOA1MoGmcsRFkThBdG/Zzy42zGhBsG0AAV7yLqMhA/CQjgUoF0EdFRUVhxQfPyIEEqXgypn8DcbC7LDiawDtmmt1JssUe0+SnNA8e39pTl22MeIOoKBVA8R8qgD4qMjIyYxewrgYigSyOgFz/d545CFanmawLgs0gE9LScOQD7rU7iQ08kH4oXWsAxa+oAPqoCy8kh//9+0T82vkRwEDVBlxFYHx6YH+SS7Ys3rfS8fQGctqdxgZHAVObQMS/qAD6qAtTCQfszSHiVQcIzA0g57nAPQA+NtM5FcCbQT53u0l0A33tTmKTc6/TmgIWf6IC6KOio6NxOB2w0e4kIl6SAuwk8K/B3CvjIhET0wJzLaDHsnjDk4ajOVDW7jQ22QiGYVC+fHm7k4hcMRVAH5UzZ07KVSgHsXYnEfGSjWRcPzXQzxkXCVZfGOFOY7dp2p0my72Vns4mt4n5nN1JbBQLZcqXIU+ePHYnEbliKoA+rE5MHVyxOhWMBKhYMi5GebPdQbLBy+ApBl3TkzEDaCp4u8fDk+mpMASob3ca+zhjndSJqWN3DJGrogLow2JiYvBs9Fy4yLhIQFlDRvnLYXeQbJAH3B/BsjSTMQGyIcRjWXR1p2CWAkbancZG6WBtsIiJCfShbAk0KoA+LCYmBivdgs12JxHxglgCf/r3r24B+sPj6akBMRX8dno6q9JNPB8DuexOY6OtYKaYKoDid1QAfViVKlVwOBxaByiBJxnYQnAVQIBXwF0MuqQnk+rHU8GbNPX7/2IzNoBUq1bN7iQiV0UF0IflypWLGyvcqAIogSdYNoD8XR7wfAarLJP7UpPx+GEJ3GOaNEtPxlOR4J76PS8WSkeX1gYQ8TsqgD6ubo262ggigSeYNoD8XX0wv4RZHg+9U1P8alPIQdOkSdpZTpSw8PxMcE/9nuOMdVK3Rl27Y4hcNRVAH3dhI0iy3UlEstAqoBLBsQHkUtqC9SFMdbvpmpqC2w9K4O+mSd20s8QVtPD8ChS2O5EPSNUGEPFfKoA+rlmzZhkbQX6xO4lIFjGB74HmdgexWWfgU5huurkrNZkUHy6Bmz0e6qSdJa64hWc5UNLuRD5iYcYGkObNg/1gFn+kAujjypcvz/Vlr4e5dicRySKrybjGdVu7g/iA/4E1B74xPFRJS2KVx2N3oouYlsU7aWnUSDnLiehz5a+U3al8yFwofkNxKlYM9MvZSCBSAfRxhmFwV9u7cM1zZYyciPi7uUAEoGVTGVqDGQt7brKok3yW4ampPjEauNs0aZh2liGpqaT2J6P8FbE7lQ+xwDXXxd1t78YwDLvTiFw1FUA/0LZtW9zxbu0GlsDwNdCajE0gkqESeFaD9SK8YqZRJS2J1TaNBp4f9auUnMTKIib8CrwHaJPrxdaD+4Cbtm01lC3+SQXQD9SvX5981+XTNLD4v73AdqCG3UF8UAjwFFjrMkYDayefpVdKCuuzqQimWxZfpKdTO/XcqF9f8Gwl4wTW8k9zIU94Hho2bGh3EpFrogLoB1wuF21bt82YBhbxZ/PIeNU5Y3cQH3Z+NPBV+LBAOtXOnqVWahKfpKd7ZWr4gGkyIjWVqNQzdExJYW3Nc6N+Y9Go379wzXPRulVrQkJC7I4ick1UAP1E27ZtcW9ww592JxG5do65DiIKRuD80Wl3FN8WAjwK7gPA1xBb36RLSgqRKWcYlprKT243J66xDFqWxW7TZGZ6OnemnKXU2SRGOdM41hvYBOZSNOr3Xw6AO9ZNu7bt7E4ics0My/KB1cZ+KjExkfDwcBISEsiXL5/XHyuiYATuN90w0KsPJeIdp8AoZPC/e/7HjM9nYB2xoIDdofzIDmACOKeAJzHjS8VCDWqbDmo6nFR3OilkGOQAchgGJpBsWSSTcQ6/WI+HlYbJWtPDGXfGz7vKg3sQGaek8e5LWGCZAM5BTo4eOcp1111ndxq5Btn5/u2rVAAzIbsPoBa3teDXpF/x/OZbp4oQuSLTgO6watUqateujfW+Bb3sDuWHTGAXGZvCYsGxCoy14Dn77z8WEgnptclYfxlz7lbIy1kDlKOpg4ZGQxYuWGh3FLlGKoDah+dXevfozc/3/gybybiKgogfcY530qRlE2rWrMltt9/Gj+N/xNPTAzqDxtVxANHnbvedOzuUScYGm1NAChlXDnICOcm42koxSFfZyxrbwPzVpM/0PnYnEckUFUA/0r59ewoWLcixccdgnN1pRK7CGvCs8jBoziAABvYfyHetv8u4JFxte6MFBAdQxu4QQWI8XFfoOu6++267k4hkijaB+JHQ0FD69e6H82MnJNqdRuQqjIeoklG0bt0agJYtW1LihhL6ICP+5Qw4P3TSt1dfwsLC7E4jkikqgH6mT58+WMkWfGJ3EpErdBIcnzoY8OAAnM6M3b9Op5OBfQfimOmAYzbnE7lSn4J52uTBBx+0O4lIpqkA+pnixYvTpm0bXONcoO074g+mgcPjoGfPnhd9uUePHjhxwlR7YolcFQucY53cfsftlCqlCyKL/1MB9EODBgzCvcUNv9mdROQ/mOAa76JDhw4UKXLxhWQLFizIvR3vxTVe17kWP7AcPBs9DBowyO4kIllCBdAPNW3alDLRZTDGafuk+LgF4N7lZkD/AZf86wH9B+De64YfsjmXyNUaB6XKlKJFixZ2JxHJEiqAfsgwDAb1GwRfAQftTiNyecZ7BjfdfBP169e/5N/Xrl2bm6vdjOM9vRSJDzsEji8cDOo3CIdDx6oEBh3Jfqpbt24ZJ68caXcSkctYDdY8i2GPDMMwLj1abRgGwx4ZhvmdCcuzOZ/IlRoFuXLmokePHnYnEckyKoB+Kjw8nKeHP40xyci4KoCIL7HA8YSD6IrRdO7c+V+/tVOnTlSoXAHHEw5tbBLf8zsYEw2eeuIpXfZNAooKoB8bMGAARSKLYDyjtYDiY34G8xeTV1969cKpXy7H4XDw2ujXMBeb8H025RO5QsazBgULFmTw4MF2RxHJUiqAfixnzpyMfG4k1kwr47qgIr7ABOcTTmrXq02bNm2u6EdatWpFvYb1cA53akew+I4NYH1q8eKIF8mVK5fdaUSylAqgn+vatStly5fFMVz/lOIjvgDPWg+vvfzaZdf+/Z1hGLz+yut4NnjgMy/nE7lCjuEObih7g9b+SUBSa/BzLpeLV196FfMnExbYnUaCXjq4nnbRqnUrGjZseFU/WrduXdq0a4PrGRekeSmfyJVaBOZ3Jq+MeoWQkBC704hkOcOyLC27vkaJiYmEh4eTkJCQsSPXJpZlUatuLdaZ6/Cs9ICWBIpdJoDR32D9+vVUrlz5qn98y5Yt3Fz5Zqx3LBjohXwiV8ICZz0nldIrsXbVWp36JQD5yvu3nXRUBwDDMHjt5dfwrPbAF3ankaB1GlwvuLjv/vuuqfwBVKxYkQceeADXiy5IyOJ8IldqFnhWeHj95ddV/iRg6cgOELfcckvG9NlgFxy3O40EpcfBlehi1MhRmbqbF194kdDkUHg0i3KJXI2T4BqYsYyhefPmdqcR8RoVwAAyYdwEcqbmxHhIc8CSzRYAE+CNV9+gVKlSmbqrEiVK8Nbrb8Fk4McsSSdy5R6GHGdzMGniJLuTiHiVCmAAiYqKYuy7Y7GmWzDH7jQSNE6Dq6eLhrc0pG/fvllyl71796ZJ8ya4emkqWLLRN8CH8O5b71KsWDG704h4lQpggOncuTO333E7rgc1FSzZ5HFwHXPx4ZQPs2y9lGEYTJ08ldBTmgqWbHISXL1d3Hb7bXTr1s3uNCJepwIYYAzDYNLESRlTwYM1FSxe9pep3xtuuCFL77pUqVL/PxX8Q5betcg/DcmY+p38/uQrPn+liD9TAQxAF6aCP7Vgtt1pJGB5Yer37zQVLNliPvCRpn4luKgABqjOnTvTuk1rXH01FSxe4oWp37+7MBWcoKlg8ZKT4OqjqV8JPiqAAcowDN6f8H7GVHBPQ9dXlaw1B69N/f7dRVPBX3n1oSTYmGD0NjT1K0FJBTCARUVFMf2j6TAXeM7uNBIwNoGzs5M7777Ta1O/f9e7d2863tsRxwMO2JAtDynBYCRYX1l8PO1jTf1K0FEBDHBt2rRh1KhR8CK6Sohk3jFwtXNRvkx5Pv7w42y7SoJhGEydMpWK0RVxtXPB0Wx5WAlkXwMj4MUXX6R9+/Z2pxHJdiqAQeCJJ57g3v/di6OrA9bZnUb8Vjo4OjrIezov38z5hty5c2frw+fKlYtv5nxDvuR8ODo4IC1bH14CyUZwPODg7nvu5qmnnrI7jYgtgrYAjho1inr16pErVy7y589vdxyvMgyDKR9M4eYKN2eMnhy2O5H4pYfB+M1g9lezM321j2tVokQJ5n49F8dyBwwCLFtiiD87Cq62LircWIEPp36odX8StIK2AKalpXHPPffQr18/u6Nki1y5cjF/9nzC08Jx3u3U6IlcnYnAWBg3dhyNGjWyNUr9+vWZOGEivA+MtzWK+Js0cHRwkPesPaPYIr4kaAvg888/z8MPP8zNN99sd5RsU7x4cebNmoex2oABaPRErsxiMAYa9Ovfjz59+tidBoAePXowePDgjJOd/2p3GvEbD4FjuYO5X8+lZMmSdqcRsVXQFsBgVbduXd6f8H7GKTVeszuN+Lxt4LzbSYMGDXjn7XfsTnORN954g1ua3IKzgxO22J1GfN6bwAQYP248DRo0sDuNiO1UAK9CamoqiYmJF938Uffu3Xn66adhGPCe3WnEZ+0GVzMXZYuUZdaXswgJCbE70UVcLhdfff4V0cWjcTZzwk67E4nPGg88AsOGDaNXr152pxHxCQFVAJ944gkMw/jX2/bt26/5/kePHk14ePiFW4kSJbIwffZ64YUXeOSRR2AwMMnuNOJz/gBXUxel8pVi0YJFRERE2J3okq677jp+/elXShcojaupC363O5H4nClAf3jooYcYPXq03WlEfIZhWVbArAQ7evQox4//+3XPSpcuTWho6IU/T5s2jSFDhnDq1Kn/vP/U1FRSU1Mv/DkxMZESJUqQkJBAvnz5rjm3XSzLYuCggYwbNw6mAl3tTiQ+YT+4bnERRRTLFi/zixPkxsfHU69RPQ6kH8C9yA32bFIWXzMd6AJ9+vRhwvgJ2vErFyQmJhIeHu63799ZwWV3gKxUqFAhChUq5LX7DwsLIywszGv3n90Mw+C9d98jLS2Nyd0nQzqg2ZHgtjdj5K+IVYTFixb7RfkDiIyMZPEvi6nfuD7xjeJx/+KGMnanEltNBXpCt27dGD9uvMqfyN8E1BTw1di3bx/r169n3759eDwe1q9fz/r16zlz5ozd0bKVw+Fg4oSJGafD6Q2MtTuR2GYnuBq5KO4qzrLFy2w719+1KlGiBMsWL6NkjpI4Gznh2ld7iL+bAPTIGPn7YPIH2XbFGhF/ErT/Vzz77LNUq1aNESNGcObMGapVq0a1atVYs2aN3dGyncPhYOyYsQwdOhQGAq/bnUiy3RZwNnZyfZ7rWbpoqd+eIqN48eIsXbSUMvnL4GzshE12J5Js9zbQL2PN34TxE1T+RC4joNYAZrdAW0NgWRbPPPNMxrWD+wLvAr618VO84Ttw/s9JuVLlWPjzQgoXLmx3okw7evQoTW9tyrY92/B86oE77E4kXpcODAXGZOz2HT16tKZ95bIC7f37WuijkVxgGAYjR45k0qRJuD5w4WjhgKN2pxKvscgY7W0NLRu1ZMWSFQFR/iBjPfCyxcu4vent0BZ4BZ34PJAdB8dtDpwTnEyYMIGXX35Z5U/kP6gAyj/06tWLX3/5lfzb8uOq5YKNdieSLJcCxgMGPAbDnxjO3NlzA+5TcN68eZn99WyefuppeAKMzgYk251KstxmcNVyEb4xnF8W/MKDDz5odyIRv6ACKJfUoEED1q1ex035b8JRzwGz7E4kWSYuY71fyJchfPrpp7z00ks4nU67U3mFw+HgxRdfZObMmYTOCs3YHHLA7lSSZeaCs66TcnnKsXb1WtuvUy3iT1QA5bJKlizJ8iXLuev2u+Au4AXAtDuVZMoqcNVwUfBgQZb+tpROnTrZnShbdOzYkeVLl1P4cGFcNV2wwu5EkikWMApoD21btmXl0pVcf/319mYS8TMqgPKvcufOzeczP2fkyJEwAoyOBpyyO5VcNQuYCo5GDqqVqsb6NeupUaOG3amyVbVq1Vi3eh01ytTA0dgBH6B1gf4oAYxOBjwNz414ji8//5I8efLYnUrE76gAyn8yDIOnnnqK2bNnk+unXLgqueA7u1PJFYsHo50BPaDr/V35beFvFC1a1O5UtihSpAgLFyykZ7ee0AscbRwQZ3cquWI/gKuSixzf5ODLL79kxIgROs2LyDXS/zlyxdq1a8e2zdu4pdItcDvQA40G+jIL+BicFZwUWFWAWbNmMeWDKQF1NZtrERYWxvsT32fOnDkUiC2As6ITPkSjgb4sgYwT1d8GDcs3ZNvmbdx99912pxLxayqAclVKlCjBj9/9yOTJk8n9Ve6M0cBv7U4l/3B+1O8B6Hh7R3Zs2UH79u3tTuVT2rZty44tO/jfHf+DbudGAw/anUr+4dyoX84ZOZk4cSILflzgd1epEfFFKoBy1QzDoGfPnv8/Gtga6I5GA33BJUb9Pp3+KREREXYn80kFChTgk48/0WigL0og49rkfxn169Onj87vJ5JFVADlml00Gvh17ow3zznozdMu+zTqd60ujAa2+cto4B92pwpSFjD/3KjfTI36iXiLCqBkyl9HA5tWbgrtM84xxzK7kwWRY8BQcNzo0KhfJvx1NDBibQSOaAcMQVfDyU4rwNHEAW2g0U2NNOon4kUqgJIlSpQowQ/f/sC3335L+cTyUP/caNQWu5MFsDPASHCWcZJrci5GPDWCvbv2atQvk9q2bcvvO3/n+WeeJ/fU3DjLODPOgXna7mQBbBsYdxpQF6JPRDN//nx+/uFnjfqJeJEKoGQZwzBo1aoVG9duZPr06RTfVBxuBroBf9ocLpCkAWPBVdaF60UXg3oM4o89f/Dss8+SN29eu9MFhDx58vD000/zx54/eKj3Q7hGuTKK4Htk/PeXrLEf6AFGJYNi64vx0UcfsWndJlq3bq1RPxEvUwGULOdwOLjvvvvYvX037737HgW+K4CjnAOGkjFdKdfGBD4F100ujEEG9912H7t27OKtt96iUKFCdqcLSAULFuSNN95gz649dLmjC8YQA1d5F0xHV8XJjOPAoxnLFq6bfx1vv/U2u7fvpkuXLgF7WUIRX6MCKF4TGhrKwIED+XPPn4x4agS5JufCUdKRsbNvrd3p/Mhx4HVwlXPB/dCyYks2btzIh9M+1OWvsknJkiWZOmUqmzZuolXlVtAZXDe64DX0oeZqrAN6g6Okg5wTc/LME8/w554/GTx4cNCfn1IkuxmWZWnP5jVKTEwkPDychIQE8uXLZ3ccn3fs2DHef/99xkwYQ/z+eJy1nXj6e6AjkMPudD5oFTAOHDMcOCwHHe/pyOBBg6ldu7bdyYLe6tWrefe9d5kxcwamYWLea0J/oBagmcuLpQBfgnOsE88KD0WLF2XAgwPo06cPhQsXtjudBCm9f6sAZooOoGvjdrv55ptvGDNuDD//+DPOCCeeHh54EChjdzqbnQVmgnOcE88aD8VKFWNg34H06NFDb5Y+6OjRo0ydOpX3xr/HgT8O4Kx+7kNNJyCX3elstheYAM4PnHiOe2jaoimD+g/ijjvuwOVy2Z1Ogpzev1UAM0UHUObt2rWLCRMmMHnqZBJPJeJo6cD8n5lxqblgWdaWDiwBZoHzEyfmKZNbb7uVgf0H0qpVK62J8gMej4cffviBMePG8P233+MId+Dp7IE7gYZAiN0Js8kx4FtwzHRgfmeSNzwvvbr3om/fvpQrV87udCIX6P1bBTBTdABlnbNnzzJz5kzGTxrPmhVrwABHPQeeNh5oC0QTWFNrp4DvgXng/NaJ55SHwlGFeeC+B+jbty9lygT7UKj/2rt3LxMmTODD6R9y+OBhnOFOPK3OHcetgPw2B8xqO8g4juc68Sz1gAk16tSgb6++dOrUiVy5gn0oVHyR3r9VADNFB5B3HDp0iG+++YbZc2fz008/kZqciutGF+627ow30XqAP84g7QXmgWOuA2uRheW2qFS1Ene1vYu2bdtSvXp1nfoigFiWxbp165g7dy6z5s1i49qNGC4Do5GB2daENkBpu1NeAzewHJgLrrku3DvdhOYIpUWLFrRv257WrVsTGRlpd0qRf6X3bxXATNEB5H3JycksWLDgwpvosUPHcIY7sWIszBgTagAxZLyR+lJ3OknGTufYjFtIbAjpe9Jxhbho0rQJ7du254477qBkyZI2B5Xssn//fubPn8/subP55ZdfcKe5CSkdQnpMesYxXAOoDlxnc9C/ssj44LIGiAVHrAMj1sBzykNEkQjubHMnbdu2pVmzZhrpE7+i928VwEzRAZS9TNNkzZo1/PTTT6yJXcOKNSs4tP8QAM78TqzqFmYNM+PNtApQHMjt5VBu4AiwnYyyt+b/yx5Ajtw5qF69OrVialG/fn1uvfVWHSvC6dOn+fHHH1m6dCmrYlexdu1aks8kA/x/KTz/4eYmoDDeH/U+CxwANpBR9tY4MNYaeE56AChSvAh1atShRkwNWrRoQc2aNXE4dCYx8U96/1YBzBQdQPY7evQosbGxxMbGsnrNalbGrrxQCgGc+Zw4ohx4Ij2YkSZEAZFk/FqEjNPPuM7dQsgYRXT/5ZYOnADigPj//zUkLgTiIf1I+oUTAv+17MXExBATE0O5cuW0iUP+k2ma7Ny588KxvHLNStatW3ehFGJASJEQiAR3pBsryvr/4zgSiCDj+HX95Wbx/8ewm4zTsRzmouPYEefAGe/EjDfxJHgu5Plr2Tt/LGsXugQSvX+rAGaKDiDfdPToUTZt2kRcXBzx8fHEx8cTFxfHgfgDHIg7wOH4w6QkpVzVfTqcDgoWLUhkZCQlIktQLKoYkZGRREVFERkZSZkyZVT2JEudL4W7d+++6DiOi49jX9w+4uPjOXboGKbn6i5JkiNXDopEFaFYZDFKRJW46DiOioqiUqVKKnsS8PT+rQKYKTqA/Nfp06c5dOgQaWlpuN1u3G436enpmKZJSEgILpfrwq1AgQIULFhQ5U58jsfj4dixY5w4cQKPx0N6evqFY9nhcFx0LIeGhlKkSBHy5s2rzUYS9PT+7Z97KUUyLW/evOTNm9fuGCKZ4nQ6KVKkCEWKFLE7ioj4Ga3gFREREQkyKoAiIiIiQUYFUERERCTIqACKiIiIBBkVQBEREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJDRiaAz4fxFVBITE21OIiIiIlfq/Pt2MF8MTQUwE06fPg1AiRIlbE4iIiIiV+v06dOEh4fbHcMWuhZwJpimSVxcXMBcWzMxMZESJUqwf//+oLw2op6/nr+ev56/nn9wPH/Lsjh9+jRRUVE4HMG5Gk4jgJngcDgoXry43TGyXL58+YLiBeBy9Pz1/PX89fyDVTA9/2Ad+TsvOGuviIiISBBTARQREREJMiqAckFYWBgjRowgLCzM7ii20PPX89fz1/PX8w/O5x+MtAlEREREJMhoBFBEREQkyKgAioiIiAQZFUARERGRIKMCKCIiIhJkVADlkkaNGkW9evXIlSsX+fPntztOthg7dizXX389OXLkoHbt2qxatcruSNli8eLFtGnThqioKAzDYPbs2XZHylajR4+mZs2a5M2bl8KFC9O+fXt27Nhhd6xsM378eCpXrnzhBMB169blu+++szuWbV5++WUMw2DIkCF2R8kWzz33HIZhXHQrX7683bEkG6gAyiWlpaVxzz330K9fP7ujZIuZM2cydOhQRowYwdq1a6lSpQotW7bkyJEjdkfzuqSkJKpUqcLYsWPtjmKLRYsWMWDAAFasWMFPP/1Eeno6t956K0lJSXZHyxbFixfn5ZdfJjY2ljVr1tC0aVPatWvHli1b7I6W7VavXs3EiROpXLmy3VGyVcWKFYmPj79wW7Jkid2RJBvoNDDyr6ZNm8aQIUM4deqU3VG8qnbt2tSsWZMxY8YAGdd5LlGiBIMGDeKJJ56wOV32MQyDWbNm0b59e7uj2Obo0aMULlyYRYsW0ahRI7vj2KJAgQK89tpr9OzZ0+4o2ebMmTNUr16dcePGMXLkSKpWrcrbb79tdyyve+6555g9ezbr16+3O4pkM40AStBLS0sjNjaW5s2bX/iaw+GgefPmLF++3MZkYoeEhAQgowQFG4/Hw4wZM0hKSqJu3bp2x8lWAwYMoHXr1he9DgSLXbt2ERUVRenSpbn//vvZt2+f3ZEkG7jsDiBit2PHjuHxeChSpMhFXy9SpAjbt2+3KZXYwTRNhgwZQv369alUqZLdcbLNpk2bqFu3LikpKeTJk4dZs2ZRoUIFu2NlmxkzZrB27VpWr15td5RsV7t2baZNm0Z0dDTx8fE8//zzNGzYkM2bN5M3b16744kXaQQwiDzxxBP/WOz795sKjwSzAQMGsHnzZmbMmGF3lGwVHR3N+vXrWblyJf369aNr165s3brV7ljZYv/+/Tz00ENMnz6dHDly2B0n27Vq1Yp77rmHypUr07JlS7799ltOnTrF559/bnc08TKNAAaRRx55hG7duv3r95QuXTp7wviQggUL4nQ6OXz48EVfP3z4MEWLFrUplWS3gQMHMn/+fBYvXkzx4sXtjpOtQkNDKVu2LAAxMTGsXr2ad955h4kTJ9qczPtiY2M5cuQI1atXv/A1j8fD4sWLGTNmDKmpqTidThsTZq/8+fNTrlw5du/ebXcU8TIVwCBSqFAhChUqZHcMnxMaGkpMTAwLFiy4sPnBNE0WLFjAwIED7Q0nXmdZFoMGDWLWrFksXLiQG264we5ItjNNk9TUVLtjZItmzZqxadOmi77WvXt3ypcvz7Bhw4Kq/EHGZpg9e/bQpUsXu6OIl6kAyiXt27ePEydOsG/fPjwez4UdYmXLliVPnjz2hvOCoUOH0rVrV2rUqEGtWrV4++23SUpKonv37nZH87ozZ85c9Gl/7969rF+/ngIFClCyZEkbk2WPAQMG8OmnnzJnzhzy5s3LoUOHAAgPDydnzpw2p/O+4cOH06pVK0qWLMnp06f59NNPWbhwIT/88IPd0bJF3rx5/7HeM3fu3ERERATFOtBHH32UNm3aUKpUKeLi4hgxYgROp5NOnTrZHU28TAVQLunZZ5/lww8/vPDnatWqAfDrr79yyy232JTKe+69916OHj3Ks88+y6FDh6hatSrff//9PzaGBKI1a9bQpEmTC38eOnQoAF27dmXatGk2pco+48ePB/jHcT116tT/XDIRCI4cOcIDDzxAfHw84eHhVK5cmR9++IEWLVrYHU2ywYEDB+jUqRPHjx+nUKFCNGjQgBUrVmi2KAjoPIAiIiIiQUa7gEVERESCjAqgiIiISJBRARQREREJMiqAIiIiIkFGBVBEREQkyKgAioiIiAQZFUARkSs0Z84cbrjhBmrWrMnOnTvtjiMics10HkARkStUsmRJpkyZwrp161izZg0zZ860O5KIyDXRCKCIyDl//PEHhmFgGAZVq1b9x99HRERQtmxZSpUqRYECBf7x9+d/Nn/+/N4PKyKSCboUnIjI3/z888+XLIBPPvkkZcqUASA+Pv4ffx8fH8/MmTMZMWKEtyOKiGSKRgBFRP4mIiKCiIiIf3x92bJldOrUiWLFirFy5cp//H3RokUJDw/PjogiIpmiAigiAeno0aMULVqUl1566cLXli1bRmhoKAsWLLjq+0tPT2f69Ol06dKF++67j6lTp2ZlXBGRbKUpYBEJSIUKFWLKlCm0b9+eW2+9lejoaLp06cLAgQNp1qzZVd/f/PnzcTqdNG/enGLFilG9enWOHTtGwYIFvZBeRMS7NAIoIgHr9ttvp3fv3tx///307duX3LlzM3r06Gu6r6lTp/K///0Pp9NJpUqVqFChAtOnT8/ixCIi2UMFUEQC2uuvv47b7eaLL75g+vTphIWFXfV9HD58mO+++47OnTtf+Frnzp01DSwifktTwCIS0Pbs2UNcXBymafLHH39w8803X/V9fPzxx7jdbmrXrn3ha5ZlYZom69ato1q1alkZWUTE61QARSRgpaWl0blzZ+69916io6Pp1asXmzZtonDhwld1P1OnTuWRRx6hW7duF3198ODBTJs2TQVQRPyOCqCIBKynnnqKhIQE3n33XfLkycO3335Ljx49mD9//hXfx6pVq9i6dStfffUV5cuXv+jvOnXqxPDhw3nttdcIDQ3N6vgiIl6jNYAiEpAWLlzI22+/zccff0y+fPlwOBx8/PHH/Pbbb4wfP/6K72fq1KlUqFDhH+UPoH379pw6dYp58+ZlZXQREa/TCKCIBKRbbrmF9PT0i752/fXXk5CQcFX3829lsVChQrjd7mvKJyJiJxVAEZG/qVevHlWrVmXZsmVX9XN58uTB7XaTI0cOLyUTEckaKoAiIucUL16cXbt2AVzT6WLWr18PgNPpzMpYIiJZzrAsy7I7hIiIiIhkH20CEREREQkyKoAiIiIiQUYFUERERCTIqACKiIiIBBkVQBEREZEgowIoIiIiEmRUAEVERESCjAqgiIiISJD5P2cOqIkpXMSXAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "