forked from uds-lsv/AAdaM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ft.py
153 lines (128 loc) · 5.32 KB
/
train_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""Fine-tuning the full model ( cross-encoder) with provided dataset."""
import logging
import os
import math
from torch.utils.data import DataLoader
from transformers import (
AutoModelForCausalLM,
HfArgumentParser,
TrainingArguments,
set_seed
)
from sentence_transformers import (
LoggingHandler
)
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator
from utils import create_str_dataset, create_stsb_dataset, train_callback, eval_callback
from arguments import ModelArguments, DataTrainingArguments, SemArguments, WandbArguments
# Setup logging
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
from dataclasses import dataclass, field
from typing import Optional
import wandb
@dataclass
class DataTrainingArguments :
language: Optional[str] = field(
default='eng',
metadata={"help": "The language of the task"}
)
max_seq_length: int = field(
default=256,
metadata={
"help" : (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help" : "Overwrite the cached preprocessed datasets or not."}
)
train_file: Optional[str] = field(
default=None, metadata={"help" : "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help" : "A csv or a json file containing the validation data."}
)
augmentation_file: Optional[str] = field(
default=None, metadata={"help" : "A csv or a json file containing the validation data."}
)
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained model name"
}
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Tokenizer name"
}
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
logging.info(model_args)
logging.info(data_args)
# create output dir
os.makedirs(training_args.output_dir, exist_ok=True)
# set seed before initializing model.
set_seed(training_args.seed)
# load data
train_samples = create_str_dataset(data_args.train_file)
eval_samples = create_str_dataset(data_args.validation_file)
logging.info("Train samples: {}".format(len(train_samples)))
aug_samples = None
if data_args.augmentation_file is not None:
if 'stsb' in data_args.augmentation_file:
aug_samples = create_stsb_dataset(data_args.augmentation_file, data_args.language)
elif 'translate' in data_args.augmentation_file:
aug_samples = create_str_dataset(data_args.augmentation_file)
else:
raise NotImplementedError
model = CrossEncoder(model_args.model_name_or_path, num_labels=1, max_length=data_args.max_seq_length)
evaluator = CECorrelationEvaluator.from_input_examples(eval_samples, name='dev')
# training
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=training_args.per_device_train_batch_size)
warmup_steps = math.ceil(
len(train_dataloader) * training_args.num_train_epochs * 0.1) # 10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
wandb.init(project=os.environ["WANDB_PROJECT"],
name=os.environ["WANDB_NAME"],
job_type=os.environ["WANDB_JOB_TYPE"],
group=os.environ["WANDB_RUN_GROUP"])
if aug_samples is not None:
aug_dataloader = DataLoader(aug_samples, shuffle=True, batch_size=training_args.per_device_train_batch_size)
model.fit(train_dataloader=aug_dataloader,
evaluator=evaluator,
epochs=int(training_args.num_train_epochs),
optimizer_params={'lr' : training_args.learning_rate},
evaluation_steps=training_args.eval_steps,
warmup_steps=int(warmup_steps),
output_path=training_args.output_dir,
save_best_model=True)
del model
model = CrossEncoder(training_args.output_dir, num_labels=1)
model.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=int(training_args.num_train_epochs),
optimizer_params={'lr': training_args.learning_rate},
evaluation_steps=training_args.eval_steps,
warmup_steps=warmup_steps,
output_path=training_args.output_dir,
save_best_model=True,
log_callback=train_callback,
callback=eval_callback)
if __name__ == '__main__':
main()