-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathex_som_marilyn_monroe.py
120 lines (96 loc) · 4.66 KB
/
ex_som_marilyn_monroe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/python
## Massimiliano Patacchiola, Plymouth University 2016
#
# In this example a SOM with 2D input vectors is trained to morph a b/w image.
# Each pixel of the b/w image is represented with a tuple (x, y) representing its location.
# Random pixels are then sampled from a probability distribution built on the image pixel
# intensity map. Darker pixels have higher probability of being sampled.
# The SOM adapt its weights to describe that random distribution.
#
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
#It requires the pyERA library
from pyERA.som import Som
from pyERA.utils import ExponentialDecay
def main():
#Set to True if you want to save the SOM images inside a folder.
SAVE_IMAGE = True
output_path = "./outputo/" #Change this path to save in a different forlder
if not os.path.exists(output_path):
os.makedirs(output_path)
#Opening the image in greyscale
img_size = 512
img_original = Image.open('./input/marilyn_original.jpg')
img = Image.open('./input/marilyn_filtered.jpg').convert("L") #greyscale
img_matrix = np.asarray(img, dtype=np.float32)
#Normalising the pixel values to sum up to 1.0
#The image can be seen as a probability distribution
#where darker pixels have higher probability to be sampled
img_prob = (255.0 - img_matrix) / 255.0
img_prob = img_prob / np.sum(img_prob, dtype=np.float32)
#This list is a flatten array containing np.array([row,col])
#which identify the index of the pixel in the image
index_list = list()
for row in range(0,img_size):
for col in range(0,img_size):
index_list.append(np.array([row,col]))
#The single index array is an array containing a single
#identifier for the pixel to take. The function random.choice
#can take samples from the single_index given a probability
#distribution. The probability distribution in our case is the
#normalised image.
single_index_array = np.arange(0, img_size*img_size)
#Creating a SOM with weights in the rage [0, img_size]
#Each weight codifies a position in the original image
som_size = 128
batch_size = 64
my_som = Som(matrix_size=som_size, input_size=2, low=0, high=img_size-1, round_values=True)
tot_epochs = 5000
my_learning_rate = ExponentialDecay(starter_value=0.9, decay_step=50, decay_rate=0.9, staircase=True)
my_radius = ExponentialDecay(starter_value=np.rint(som_size/5), decay_step=80, decay_rate=0.95, staircase=True)
for epoch in range(0, tot_epochs):
#Getting a random input
input_vector_list = list()
sorted_index_list = np.random.choice(single_index_array, batch_size, p=img_prob.flatten())
for i in range(0, batch_size):
input_vector_list.append(index_list[sorted_index_list[i]])
#Updating the learning rate and the radius
learning_rate = my_learning_rate.return_decayed_value(global_step=epoch)
radius = my_radius.return_decayed_value(global_step=epoch)
if(epoch % 1 == 0):
#Generate the image from the SOM weights
som_img = np.full((img_size, img_size, 3), 255, dtype=np.uint8) #np.zeros((img_size, img_size, 3), dtype=np.uint8)
som_weights_matrix = my_som.return_weights_matrix()
for row in range(0, som_weights_matrix.shape[0]):
for col in range(0, som_weights_matrix.shape[1]):
x = int(som_weights_matrix[row, col, 0])
y = int(som_weights_matrix[row, col, 1])
som_img[x, y, 0] = 0
som_img[x, y, 1] = 0
som_img[x, y, 2] = 0
#Saving the image
if(SAVE_IMAGE == True):
fig = plt.figure()
a=fig.add_subplot(1,2,1)
imgplot = plt.imshow(img_original)
plt.axis("off")
b=fig.add_subplot(1,2,2)
imgplot = plt.imshow(som_img)
plt.axis("off")
plt.savefig(output_path + str(epoch) + ".png", dpi=200, facecolor='black')
plt.close('all')
#Learning step (batch learning)
my_som.training_batch_step(input_vector_list, learning_rate=learning_rate, radius=radius, weighted_distance=True)
print("")
print("Epoch: " + str(epoch))
print("Learning Rate: " + str(learning_rate))
print("Radius: " + str(radius))
print("Sorted index: " + str(sorted_index_list))
#Saving the network
file_name = "./som_marilyn.npz"
print("Saving the network in: " + str(file_name))
my_som.save(path="./", name="some_marilyn")
if __name__ == "__main__":
main()