forked from uber-research/LaneGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data.sh
executable file
·29 lines (24 loc) · 1.27 KB
/
get_data.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
## prepare data
mkdir dataset && cd dataset
# step1: download Argoverse HD Maps
wget https://s3.amazonaws.com/argoai-argoverse/hd_maps.tar.gz
tar xf hd_maps.tar.gz
# copy map to argoverseapi root folder
PY_SITE_PACKAGE_PATH=$(python -c 'import site; print(site.getsitepackages()[0])')
echo "copying map files to python3.7/site-packages: ", $PY_SITE_PACKAGE_PATH
cp -r map_files $PY_SITE_PACKAGE_PATH
# step2: download Argoverse Motion Forecasting **v1.1**
# train + val + test
wget https://s3.amazonaws.com/argoai-argoverse/forecasting_train_v1.1.tar.gz
wget https://s3.amazonaws.com/argoai-argoverse/forecasting_val_v1.1.tar.gz
wget https://s3.amazonaws.com/argoai-argoverse/forecasting_test_v1.1.tar.gz
tar xvf forecasting_train_v1.1.tar.gz
tar xvf forecasting_val_v1.1.tar.gz
tar xvf forecasting_test_v1.1.tar.gz
# step3: preprocess data to accelerate training
# STEP3-Option1: preprocess data locally, it's very slow, will take a few hours
python preprocess_data.py -m lanegcn
# STEP3-Option2: Download from my digitalocean space
# wget https://yun.sfo2.cdn.digitaloceanspaces.com/public/lanegcn/test_test.p
# wget https://yun.sfo2.cdn.digitaloceanspaces.com/public/lanegcn/train_crs_dist6_angle90.p
# wget https://yun.sfo2.cdn.digitaloceanspaces.com/public/lanegcn/val_crs_dist6_angle90.p