-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
40 lines (32 loc) · 1.31 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
# todo: change it to something like
# metric = accuracy(topk=(1,))
# metric_val = metric(output, target)
# todo: get ideas from hugging face metrics: https://huggingface.co/docs/datasets/using_metrics.html
def accuracy(topk=(1,)):
return TopK(topk)
class TopK:
def __init__(self, topk=(1,)):
if isinstance(topk, (list, tuple)):
self._topk = topk
else:
self._topk = (topk, )
# TODO: make the class call a function, so we don't have to replace topk with self._topk
# TODO: we want users to provide a function to call straight away
def __call__(self, output, target):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(self._topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in self._topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# todo: overwrite __name__(self)
@property
def name(self):
return "/".join([f"Acc@{i}" for i in self._topk])