-
Notifications
You must be signed in to change notification settings - Fork 0
/
MCTS.py
138 lines (99 loc) · 3.97 KB
/
MCTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import logging
import config
from utils import setup_logger
import loggers as lg
class Node():
def __init__(self, state):
self.state = state
self.playerTurn = state.playerTurn
self.id = state.id
self.edges = []
def isLeaf(self):
if len(self.edges) > 0:
return False
else:
return True
class Edge():
def __init__(self, inNode, outNode, prior, action):
self.id = inNode.state.id + '|' + outNode.state.id
self.inNode = inNode
self.outNode = outNode
self.playerTurn = inNode.state.playerTurn
self.action = action
self.stats = {
'N': 0,
'W': 0,
'Q': 0,
'P': prior,
}
class MCTS():
def __init__(self, root, cpuct):
self.root = root
self.tree = {}
self.cpuct = cpuct
self.addNode(root)
def __len__(self):
return len(self.tree)
def moveToLeaf(self):
lg.logger_mcts.info('------MOVING TO LEAF------')
breadcrumbs = []
currentNode = self.root
done = 0
value = 0
lastAction = -1
while not currentNode.isLeaf():
lg.logger_mcts.info('PLAYER TURN...%d', currentNode.state.playerTurn)
maxQU = -99999
if currentNode == self.root:
epsilon = config.EPSILON
nu = np.random.dirichlet([config.ALPHA] * len(currentNode.edges))
else:
epsilon = 0
nu = [0] * len(currentNode.edges)
Nb = 0
for action, edge in currentNode.edges:
Nb = Nb + edge.stats['N']
for idx, (action, edge) in enumerate(currentNode.edges):
U = self.cpuct * \
((1-epsilon) * edge.stats['P'] + epsilon * nu[idx] ) * \
np.sqrt(Nb) / (1 + edge.stats['N'])
Q = edge.stats['Q']
lg.logger_mcts.info('action: %d... N = %d, P = %f, nu = %f, adjP = %f, W = %f, Q = %f, U = %f, Q+U = %f'
, action, edge.stats['N'], np.round(edge.stats['P'],6), np.round(nu[idx],6), ((1-epsilon) * edge.stats['P'] + epsilon * nu[idx] )
, np.round(edge.stats['W'],6), np.round(Q,6), np.round(U,6), np.round(Q+U,6))
if Q + U > maxQU:
maxQU = Q + U
simulationAction = action
simulationEdge = edge
lg.logger_mcts.info('action with highest Q + U...%d', simulationAction)
newState, value, done = currentNode.state.takeAction(simulationAction) #the value of the newState from the POV of the new playerTurn
currentNode = simulationEdge.outNode
breadcrumbs.append(simulationEdge)
if simulationAction == lastAction:
import pdb; pdb.set_trace()
lastAction = simulationAction
lg.logger_mcts.info('DONE...%d', done)
return currentNode, value, done, breadcrumbs
def backFill(self, leaf, value, breadcrumbs):
lg.logger_mcts.info('------DOING BACKFILL------')
currentPlayer = leaf.state.playerTurn
for edge in breadcrumbs:
playerTurn = edge.playerTurn
if playerTurn == currentPlayer:
direction = 1
else:
direction = -1
edge.stats['N'] = edge.stats['N'] + 1
edge.stats['W'] = edge.stats['W'] + value * direction
edge.stats['Q'] = edge.stats['W'] / edge.stats['N']
lg.logger_mcts.info('updating edge with value %f for player %d... N = %d, W = %f, Q = %f'
, value * direction
, playerTurn
, edge.stats['N']
, edge.stats['W']
, edge.stats['Q']
)
edge.outNode.state.render(lg.logger_mcts)
def addNode(self, node):
self.tree[node.id] = node