forked from Prof-Butts/Hook_XWACockpitLook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Vectors.h
531 lines (422 loc) · 17.3 KB
/
Vectors.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
///////////////////////////////////////////////////////////////////////////////
// Vectors.h
// =========
// 2D/3D/4D vectors
//
// AUTHOR: Song Ho Ahn ([email protected])
// CREATED: 2007-02-14
// UPDATED: 2013-01-20
//
// Copyright (C) 2007-2013 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#ifndef VECTORS_H_DEF
#define VECTORS_H_DEF
//#include "pch.h"
#include <cmath>
#include <iostream>
///////////////////////////////////////////////////////////////////////////////
// 2D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector2
{
float x;
float y;
// ctors
Vector2() : x(0), y(0) {};
Vector2(float x, float y) : x(x), y(y) {};
// utils functions
void set(float x, float y);
float length() const; //
float distance(const Vector2& vec) const; // distance between two vectors
Vector2& normalize(); //
float dot(const Vector2& vec) const; // dot product
bool equal(const Vector2& vec, float e) const; // compare with epsilon
// operators
Vector2 operator-() const; // unary operator (negate)
Vector2 operator+(const Vector2& rhs) const; // add rhs
Vector2 operator-(const Vector2& rhs) const; // subtract rhs
Vector2& operator+=(const Vector2& rhs); // add rhs and update this object
Vector2& operator-=(const Vector2& rhs); // subtract rhs and update this object
Vector2 operator*(const float scale) const; // scale
Vector2 operator*(const Vector2& rhs) const; // multiply each element
Vector2& operator*=(const float scale); // scale and update this object
Vector2& operator*=(const Vector2& rhs); // multiply each element and update this object
Vector2 operator/(const float scale) const; // inverse scale
Vector2& operator/=(const float scale); // scale and update this object
bool operator==(const Vector2& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector2& rhs) const; // exact compare, no epsilon
bool operator<(const Vector2& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector2 operator*(const float a, const Vector2 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector2& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 3D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector3
{
float x;
float y;
float z;
// ctors
Vector3() : x(0), y(0), z(0) {};
Vector3(float x, float y, float z) : x(x), y(y), z(z) {};
// utils functions
void set(float x, float y, float z);
float length() const; //
float distance(const Vector3& vec) const; // distance between two vectors
Vector3& normalize(); //
float dot(const Vector3& vec) const; // dot product
Vector3 cross(const Vector3& vec) const; // cross product
bool equal(const Vector3& vec, float e) const; // compare with epsilon
// operators
Vector3 operator-() const; // unary operator (negate)
Vector3 operator+(const Vector3& rhs) const; // add rhs
Vector3 operator-(const Vector3& rhs) const; // subtract rhs
Vector3& operator+=(const Vector3& rhs); // add rhs and update this object
Vector3& operator-=(const Vector3& rhs); // subtract rhs and update this object
Vector3 operator*(const float scale) const; // scale
Vector3 operator*(const Vector3& rhs) const; // multiplay each element
Vector3& operator*=(const float scale); // scale and update this object
Vector3& operator*=(const Vector3& rhs); // product each element and update this object
Vector3 operator/(const float scale) const; // inverse scale
Vector3& operator/=(const float scale); // scale and update this object
bool operator==(const Vector3& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector3& rhs) const; // exact compare, no epsilon
bool operator<(const Vector3& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector3 operator*(const float a, const Vector3 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector3& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 4D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector4
{
float x;
float y;
float z;
float w;
// ctors
Vector4() : x(0), y(0), z(0), w(0) {};
Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {};
// utils functions
void set(float x, float y, float z, float w);
float length() const; //
float distance(const Vector4& vec) const; // distance between two vectors
Vector4& normalize(); //
float dot(const Vector4& vec) const; // dot product
bool equal(const Vector4& vec, float e) const; // compare with epsilon
// operators
Vector4 operator-() const; // unary operator (negate)
Vector4 operator+(const Vector4& rhs) const; // add rhs
Vector4 operator-(const Vector4& rhs) const; // subtract rhs
Vector4& operator+=(const Vector4& rhs); // add rhs and update this object
Vector4& operator-=(const Vector4& rhs); // subtract rhs and update this object
Vector4 operator*(const float scale) const; // scale
Vector4 operator*(const Vector4& rhs) const; // multiply each element
Vector4& operator*=(const float scale); // scale and update this object
Vector4& operator*=(const Vector4& rhs); // multiply each element and update this object
Vector4 operator/(const float scale) const; // inverse scale
Vector4& operator/=(const float scale); // scale and update this object
bool operator==(const Vector4& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector4& rhs) const; // exact compare, no epsilon
bool operator<(const Vector4& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector4 operator*(const float a, const Vector4 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector4& vec);
};
// fast math routines from Doom3 SDK
inline float invSqrt(float x)
{
float xhalf = 0.5f * x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i>>1); // gives initial guess
x = *(float*)&i; // convert bits back to float
x = x * (1.5f - xhalf*x*x); // Newton step
return x;
}
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector2
///////////////////////////////////////////////////////////////////////////////
inline Vector2 Vector2::operator-() const {
return Vector2(-x, -y);
}
inline Vector2 Vector2::operator+(const Vector2& rhs) const {
return Vector2(x+rhs.x, y+rhs.y);
}
inline Vector2 Vector2::operator-(const Vector2& rhs) const {
return Vector2(x-rhs.x, y-rhs.y);
}
inline Vector2& Vector2::operator+=(const Vector2& rhs) {
x += rhs.x; y += rhs.y; return *this;
}
inline Vector2& Vector2::operator-=(const Vector2& rhs) {
x -= rhs.x; y -= rhs.y; return *this;
}
inline Vector2 Vector2::operator*(const float a) const {
return Vector2(x*a, y*a);
}
inline Vector2 Vector2::operator*(const Vector2& rhs) const {
return Vector2(x*rhs.x, y*rhs.y);
}
inline Vector2& Vector2::operator*=(const float a) {
x *= a; y *= a; return *this;
}
inline Vector2& Vector2::operator*=(const Vector2& rhs) {
x *= rhs.x; y *= rhs.y; return *this;
}
inline Vector2 Vector2::operator/(const float a) const {
return Vector2(x/a, y/a);
}
inline Vector2& Vector2::operator/=(const float a) {
x /= a; y /= a; return *this;
}
inline bool Vector2::operator==(const Vector2& rhs) const {
return (x == rhs.x) && (y == rhs.y);
}
inline bool Vector2::operator!=(const Vector2& rhs) const {
return (x != rhs.x) || (y != rhs.y);
}
inline bool Vector2::operator<(const Vector2& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
return false;
}
inline float Vector2::operator[](int index) const {
return (&x)[index];
}
inline float& Vector2::operator[](int index) {
return (&x)[index];
}
inline void Vector2::set(float x, float y) {
this->x = x; this->y = y;
}
inline float Vector2::length() const {
return sqrtf(x*x + y*y);
}
inline float Vector2::distance(const Vector2& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y));
}
inline Vector2& Vector2::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyy = x*x + y*y;
//@@if(xxyy < EPSILON)
//@@ return *this;
//float invLength = invSqrt(xxyy);
float invLength = 1.0f / sqrtf(xxyy);
x *= invLength;
y *= invLength;
return *this;
}
inline float Vector2::dot(const Vector2& rhs) const {
return (x*rhs.x + y*rhs.y);
}
inline bool Vector2::equal(const Vector2& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon;
}
inline Vector2 operator*(const float a, const Vector2 vec) {
return Vector2(a*vec.x, a*vec.y);
}
inline std::ostream& operator<<(std::ostream& os, const Vector2& vec) {
os << "(" << vec.x << ", " << vec.y << ")";
return os;
}
// END OF VECTOR2 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector3
///////////////////////////////////////////////////////////////////////////////
inline Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
inline Vector3 Vector3::operator+(const Vector3& rhs) const {
return Vector3(x+rhs.x, y+rhs.y, z+rhs.z);
}
inline Vector3 Vector3::operator-(const Vector3& rhs) const {
return Vector3(x-rhs.x, y-rhs.y, z-rhs.z);
}
inline Vector3& Vector3::operator+=(const Vector3& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; return *this;
}
inline Vector3& Vector3::operator-=(const Vector3& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this;
}
inline Vector3 Vector3::operator*(const float a) const {
return Vector3(x*a, y*a, z*a);
}
inline Vector3 Vector3::operator*(const Vector3& rhs) const {
return Vector3(x*rhs.x, y*rhs.y, z*rhs.z);
}
inline Vector3& Vector3::operator*=(const float a) {
x *= a; y *= a; z *= a; return *this;
}
inline Vector3& Vector3::operator*=(const Vector3& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this;
}
inline Vector3 Vector3::operator/(const float a) const {
return Vector3(x/a, y/a, z/a);
}
inline Vector3& Vector3::operator/=(const float a) {
x /= a; y /= a; z /= a; return *this;
}
inline bool Vector3::operator==(const Vector3& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
}
inline bool Vector3::operator!=(const Vector3& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z);
}
inline bool Vector3::operator<(const Vector3& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
return false;
}
inline float Vector3::operator[](int index) const {
return (&x)[index];
}
inline float& Vector3::operator[](int index) {
return (&x)[index];
}
inline void Vector3::set(float x, float y, float z) {
this->x = x; this->y = y; this->z = z;
}
inline float Vector3::length() const {
return sqrtf(x*x + y*y + z*z);
}
inline float Vector3::distance(const Vector3& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z));
}
inline Vector3& Vector3::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is ~zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector3::dot(const Vector3& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z);
}
inline Vector3 Vector3::cross(const Vector3& rhs) const {
return Vector3(y*rhs.z - z*rhs.y, z*rhs.x - x*rhs.z, x*rhs.y - y*rhs.x);
}
inline bool Vector3::equal(const Vector3& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && fabs(z - rhs.z) < epsilon;
}
inline Vector3 operator*(const float a, const Vector3 vec) {
return Vector3(a*vec.x, a*vec.y, a*vec.z);
}
inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ")";
return os;
}
// END OF VECTOR3 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector4
///////////////////////////////////////////////////////////////////////////////
inline Vector4 Vector4::operator-() const {
return Vector4(-x, -y, -z, -w);
}
inline Vector4 Vector4::operator+(const Vector4& rhs) const {
return Vector4(x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w);
}
inline Vector4 Vector4::operator-(const Vector4& rhs) const {
return Vector4(x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w);
}
inline Vector4& Vector4::operator+=(const Vector4& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; w += rhs.w; return *this;
}
inline Vector4& Vector4::operator-=(const Vector4& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; w -= rhs.w; return *this;
}
inline Vector4 Vector4::operator*(const float a) const {
return Vector4(x*a, y*a, z*a, w*a);
}
inline Vector4 Vector4::operator*(const Vector4& rhs) const {
return Vector4(x*rhs.x, y*rhs.y, z*rhs.z, w*rhs.w);
}
inline Vector4& Vector4::operator*=(const float a) {
x *= a; y *= a; z *= a; w *= a; return *this;
}
inline Vector4& Vector4::operator*=(const Vector4& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; w *= rhs.w; return *this;
}
inline Vector4 Vector4::operator/(const float a) const {
return Vector4(x/a, y/a, z/a, w/a);
}
inline Vector4& Vector4::operator/=(const float a) {
x /= a; y /= a; z /= a; w /= a; return *this;
}
inline bool Vector4::operator==(const Vector4& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w);
}
inline bool Vector4::operator!=(const Vector4& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w);
}
inline bool Vector4::operator<(const Vector4& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
if(w < rhs.w) return true;
if(w > rhs.w) return false;
return false;
}
inline float Vector4::operator[](int index) const {
return (&x)[index];
}
inline float& Vector4::operator[](int index) {
return (&x)[index];
}
inline void Vector4::set(float x, float y, float z, float w) {
this->x = x; this->y = y; this->z = z; this->w = w;
}
inline float Vector4::length() const {
return sqrtf(x*x + y*y + z*z + w*w);
}
inline float Vector4::distance(const Vector4& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z) + (vec.w-w)*(vec.w-w));
}
inline Vector4& Vector4::normalize() {
//NOTE: leave w-component untouched
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector4::dot(const Vector4& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w);
}
inline bool Vector4::equal(const Vector4& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon &&
fabs(z - rhs.z) < epsilon && fabs(w - rhs.w) < epsilon;
}
inline Vector4 operator*(const float a, const Vector4 vec) {
return Vector4(a*vec.x, a*vec.y, a*vec.z, a*vec.w);
}
inline std::ostream& operator<<(std::ostream& os, const Vector4& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w << ")";
return os;
}
// END OF VECTOR4 /////////////////////////////////////////////////////////////
#endif