forked from Prof-Butts/Hook_XWACockpitLook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrices.h
909 lines (624 loc) · 27.4 KB
/
Matrices.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
///////////////////////////////////////////////////////////////////////////////
// Matrice.h
// =========
// NxN Matrix Math classes
//
// The elements of the matrix are stored as column major order.
// | 0 2 | | 0 3 6 | | 0 4 8 12 |
// | 1 3 | | 1 4 7 | | 1 5 9 13 |
// | 2 5 8 | | 2 6 10 14 |
// | 3 7 11 15 |
//
// AUTHOR: Song Ho Ahn ([email protected])
// CREATED: 2005-06-24
// UPDATED: 2013-09-30
//
// Copyright (C) 2005 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#ifndef MATH_MATRICES_H
#define MATH_MATRICES_H
//#include "pch.h"
#include <iostream>
#include <iomanip>
#include "Vectors.h"
///////////////////////////////////////////////////////////////////////////
// 2x2 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix2
{
public:
// constructors
Matrix2(); // init with identity
Matrix2(const float src[4]);
Matrix2(float m0, float m1, float m2, float m3);
void set(const float src[4]);
void set(float m0, float m1, float m2, float m3);
void setRow(int index, const float row[2]);
void setRow(int index, const Vector2& v);
void setColumn(int index, const float col[2]);
void setColumn(int index, const Vector2& v);
const float* get() const;
float getDeterminant();
Matrix2& identity();
Matrix2& transpose(); // transpose itself and return reference
Matrix2& invert();
// operators
Matrix2 operator+(const Matrix2& rhs) const; // add rhs
Matrix2 operator-(const Matrix2& rhs) const; // subtract rhs
Matrix2& operator+=(const Matrix2& rhs); // add rhs and update this object
Matrix2& operator-=(const Matrix2& rhs); // subtract rhs and update this object
Vector2 operator*(const Vector2& rhs) const; // multiplication: v' = M * v
Matrix2 operator*(const Matrix2& rhs) const; // multiplication: M3 = M1 * M2
Matrix2& operator*=(const Matrix2& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix2& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix2& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix2 operator-(const Matrix2& m); // unary operator (-)
friend Matrix2 operator*(float scalar, const Matrix2& m); // pre-multiplication
friend Vector2 operator*(const Vector2& vec, const Matrix2& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix2& m);
protected:
private:
float m[4];
};
///////////////////////////////////////////////////////////////////////////
// 3x3 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix3
{
public:
// constructors
Matrix3(); // init with identity
Matrix3(const float src[9]);
Matrix3(float m0, float m1, float m2, // 1st column
float m3, float m4, float m5, // 2nd column
float m6, float m7, float m8); // 3rd column
void set(const float src[9]);
void set(float m0, float m1, float m2, // 1st column
float m3, float m4, float m5, // 2nd column
float m6, float m7, float m8); // 3rd column
void setRow(int index, const float row[3]);
void setRow(int index, const Vector3& v);
void setColumn(int index, const float col[3]);
void setColumn(int index, const Vector3& v);
const float* get() const;
float getDeterminant();
Matrix3& identity();
Matrix3& transpose(); // transpose itself and return reference
Matrix3& invert();
// operators
Matrix3 operator+(const Matrix3& rhs) const; // add rhs
Matrix3 operator-(const Matrix3& rhs) const; // subtract rhs
Matrix3& operator+=(const Matrix3& rhs); // add rhs and update this object
Matrix3& operator-=(const Matrix3& rhs); // subtract rhs and update this object
Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v
Matrix3 operator*(const Matrix3& rhs) const; // multiplication: M3 = M1 * M2
Matrix3& operator*=(const Matrix3& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix3& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix3& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix3 operator-(const Matrix3& m); // unary operator (-)
friend Matrix3 operator*(float scalar, const Matrix3& m); // pre-multiplication
friend Vector3 operator*(const Vector3& vec, const Matrix3& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix3& m);
protected:
private:
float m[9];
};
///////////////////////////////////////////////////////////////////////////
// 4x4 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix4
{
public:
// constructors
Matrix4(); // init with identity
Matrix4(const float src[16]);
Matrix4(float m00, float m01, float m02, float m03, // 1st column
float m04, float m05, float m06, float m07, // 2nd column
float m08, float m09, float m10, float m11, // 3rd column
float m12, float m13, float m14, float m15);// 4th column
void set(const float src[16]);
void set(float m00, float m01, float m02, float m03, // 1st column
float m04, float m05, float m06, float m07, // 2nd column
float m08, float m09, float m10, float m11, // 3rd column
float m12, float m13, float m14, float m15);// 4th column
void setRow(int index, const float row[4]);
void setRow(int index, const Vector4& v);
void setRow(int index, const Vector3& v);
void setColumn(int index, const float col[4]);
void setColumn(int index, const Vector4& v);
void setColumn(int index, const Vector3& v);
const float* get() const;
//const float* getTranspose(); // return transposed matrix
float getDeterminant();
Matrix4& identity();
Matrix4& transpose(); // transpose itself and return reference
Matrix4& invert(); // check best inverse method before inverse
Matrix4& invertEuclidean(); // inverse of Euclidean transform matrix
Matrix4& invertAffine(); // inverse of affine transform matrix
Matrix4& invertProjective(); // inverse of projective matrix using partitioning
Matrix4& invertGeneral(); // inverse of generic matrix
// transform matrix
Matrix4& translate(float x, float y, float z); // translation by (x,y,z)
Matrix4& translate(const Vector3& v); //
Matrix4& rotate(float angle, const Vector3& axis); // rotate angle(degree) along the given axix
Matrix4& rotate(float angle, float x, float y, float z);
Matrix4& rotateX(float angle); // rotate on X-axis with degree
Matrix4& rotateY(float angle); // rotate on Y-axis with degree
Matrix4& rotateZ(float angle); // rotate on Z-axis with degree
Matrix4& scale(float scale); // uniform scale
Matrix4& scale(float sx, float sy, float sz); // scale by (sx, sy, sz) on each axis
// operators
Matrix4 operator+(const Matrix4& rhs) const; // add rhs
Matrix4 operator-(const Matrix4& rhs) const; // subtract rhs
Matrix4& operator+=(const Matrix4& rhs); // add rhs and update this object
Matrix4& operator-=(const Matrix4& rhs); // subtract rhs and update this object
Vector4 operator*(const Vector4& rhs) const; // multiplication: v' = M * v
Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v
Matrix4 operator*(const Matrix4& rhs) const; // multiplication: M3 = M1 * M2
Matrix4& operator*=(const Matrix4& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix4& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix4& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix4 operator-(const Matrix4& m); // unary operator (-)
friend Matrix4 operator*(float scalar, const Matrix4& m); // pre-multiplication
friend Vector3 operator*(const Vector3& vec, const Matrix4& m); // pre-multiplication
friend Vector4 operator*(const Vector4& vec, const Matrix4& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix4& m);
protected:
private:
float getCofactor(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8);
float m[16];
//float tm[16]; // transpose m
};
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix2
///////////////////////////////////////////////////////////////////////////
inline Matrix2::Matrix2()
{
// initially identity matrix
identity();
}
inline Matrix2::Matrix2(const float src[4])
{
set(src);
}
inline Matrix2::Matrix2(float m0, float m1, float m2, float m3)
{
set(m0, m1, m2, m3);
}
inline void Matrix2::set(const float src[4])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3];
}
inline void Matrix2::set(float m0, float m1, float m2, float m3)
{
m[0]= m0; m[1] = m1; m[2] = m2; m[3]= m3;
}
inline void Matrix2::setRow(int index, const float row[2])
{
m[index] = row[0]; m[index + 2] = row[1];
}
inline void Matrix2::setRow(int index, const Vector2& v)
{
m[index] = v.x; m[index + 2] = v.y;
}
inline void Matrix2::setColumn(int index, const float col[2])
{
m[index*2] = col[0]; m[index*2 + 1] = col[1];
}
inline void Matrix2::setColumn(int index, const Vector2& v)
{
m[index*2] = v.x; m[index*2 + 1] = v.y;
}
inline const float* Matrix2::get() const
{
return m;
}
inline Matrix2& Matrix2::identity()
{
m[0] = m[3] = 1.0f;
m[1] = m[2] = 0.0f;
return *this;
}
inline Matrix2 Matrix2::operator+(const Matrix2& rhs) const
{
return Matrix2(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3]);
}
inline Matrix2 Matrix2::operator-(const Matrix2& rhs) const
{
return Matrix2(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3]);
}
inline Matrix2& Matrix2::operator+=(const Matrix2& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3];
return *this;
}
inline Matrix2& Matrix2::operator-=(const Matrix2& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3];
return *this;
}
inline Vector2 Matrix2::operator*(const Vector2& rhs) const
{
return Vector2(m[0]*rhs.x + m[2]*rhs.y, m[1]*rhs.x + m[3]*rhs.y);
}
inline Matrix2 Matrix2::operator*(const Matrix2& rhs) const
{
return Matrix2(m[0]*rhs[0] + m[2]*rhs[1], m[1]*rhs[0] + m[3]*rhs[1],
m[0]*rhs[2] + m[2]*rhs[3], m[1]*rhs[2] + m[3]*rhs[3]);
}
inline Matrix2& Matrix2::operator*=(const Matrix2& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix2::operator==(const Matrix2& rhs) const
{
return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) && (m[3] == rhs[3]);
}
inline bool Matrix2::operator!=(const Matrix2& rhs) const
{
return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) || (m[3] != rhs[3]);
}
inline float Matrix2::operator[](int index) const
{
return m[index];
}
inline float& Matrix2::operator[](int index)
{
return m[index];
}
inline Matrix2 operator-(const Matrix2& rhs)
{
return Matrix2(-rhs[0], -rhs[1], -rhs[2], -rhs[3]);
}
inline Matrix2 operator*(float s, const Matrix2& rhs)
{
return Matrix2(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3]);
}
inline Vector2 operator*(const Vector2& v, const Matrix2& rhs)
{
return Vector2(v.x*rhs[0] + v.y*rhs[1], v.x*rhs[2] + v.y*rhs[3]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix2& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[2] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[3] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX2 INLINE //////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix3
///////////////////////////////////////////////////////////////////////////
inline Matrix3::Matrix3()
{
// initially identity matrix
identity();
}
inline Matrix3::Matrix3(const float src[9])
{
set(src);
}
inline Matrix3::Matrix3(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
set(m0, m1, m2, m3, m4, m5, m6, m7, m8);
}
inline void Matrix3::set(const float src[9])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2];
m[3] = src[3]; m[4] = src[4]; m[5] = src[5];
m[6] = src[6]; m[7] = src[7]; m[8] = src[8];
}
inline void Matrix3::set(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
m[0] = m0; m[1] = m1; m[2] = m2;
m[3] = m3; m[4] = m4; m[5] = m5;
m[6] = m6; m[7] = m7; m[8] = m8;
}
inline void Matrix3::setRow(int index, const float row[3])
{
m[index] = row[0]; m[index + 3] = row[1]; m[index + 6] = row[2];
}
inline void Matrix3::setRow(int index, const Vector3& v)
{
m[index] = v.x; m[index + 3] = v.y; m[index + 6] = v.z;
}
inline void Matrix3::setColumn(int index, const float col[3])
{
m[index*3] = col[0]; m[index*3 + 1] = col[1]; m[index*3 + 2] = col[2];
}
inline void Matrix3::setColumn(int index, const Vector3& v)
{
m[index*3] = v.x; m[index*3 + 1] = v.y; m[index*3 + 2] = v.z;
}
inline const float* Matrix3::get() const
{
return m;
}
inline Matrix3& Matrix3::identity()
{
m[0] = m[4] = m[8] = 1.0f;
m[1] = m[2] = m[3] = m[5] = m[6] = m[7] = 0.0f;
return *this;
}
inline Matrix3 Matrix3::operator+(const Matrix3& rhs) const
{
return Matrix3(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2],
m[3]+rhs[3], m[4]+rhs[4], m[5]+rhs[5],
m[6]+rhs[6], m[7]+rhs[7], m[8]+rhs[8]);
}
inline Matrix3 Matrix3::operator-(const Matrix3& rhs) const
{
return Matrix3(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2],
m[3]-rhs[3], m[4]-rhs[4], m[5]-rhs[5],
m[6]-rhs[6], m[7]-rhs[7], m[8]-rhs[8]);
}
inline Matrix3& Matrix3::operator+=(const Matrix3& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2];
m[3] += rhs[3]; m[4] += rhs[4]; m[5] += rhs[5];
m[6] += rhs[6]; m[7] += rhs[7]; m[8] += rhs[8];
return *this;
}
inline Matrix3& Matrix3::operator-=(const Matrix3& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2];
m[3] -= rhs[3]; m[4] -= rhs[4]; m[5] -= rhs[5];
m[6] -= rhs[6]; m[7] -= rhs[7]; m[8] -= rhs[8];
return *this;
}
inline Vector3 Matrix3::operator*(const Vector3& rhs) const
{
return Vector3(m[0]*rhs.x + m[3]*rhs.y + m[6]*rhs.z,
m[1]*rhs.x + m[4]*rhs.y + m[7]*rhs.z,
m[2]*rhs.x + m[5]*rhs.y + m[8]*rhs.z);
}
inline Matrix3 Matrix3::operator*(const Matrix3& rhs) const
{
return Matrix3(m[0]*rhs[0] + m[3]*rhs[1] + m[6]*rhs[2], m[1]*rhs[0] + m[4]*rhs[1] + m[7]*rhs[2], m[2]*rhs[0] + m[5]*rhs[1] + m[8]*rhs[2],
m[0]*rhs[3] + m[3]*rhs[4] + m[6]*rhs[5], m[1]*rhs[3] + m[4]*rhs[4] + m[7]*rhs[5], m[2]*rhs[3] + m[5]*rhs[4] + m[8]*rhs[5],
m[0]*rhs[6] + m[3]*rhs[7] + m[6]*rhs[8], m[1]*rhs[6] + m[4]*rhs[7] + m[7]*rhs[8], m[2]*rhs[6] + m[5]*rhs[7] + m[8]*rhs[8]);
}
inline Matrix3& Matrix3::operator*=(const Matrix3& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix3::operator==(const Matrix3& rhs) const
{
return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) &&
(m[3] == rhs[3]) && (m[4] == rhs[4]) && (m[5] == rhs[5]) &&
(m[6] == rhs[6]) && (m[7] == rhs[7]) && (m[8] == rhs[8]);
}
inline bool Matrix3::operator!=(const Matrix3& rhs) const
{
return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) ||
(m[3] != rhs[3]) || (m[4] != rhs[4]) || (m[5] != rhs[5]) ||
(m[6] != rhs[6]) || (m[7] != rhs[7]) || (m[8] != rhs[8]);
}
inline float Matrix3::operator[](int index) const
{
return m[index];
}
inline float& Matrix3::operator[](int index)
{
return m[index];
}
inline Matrix3 operator-(const Matrix3& rhs)
{
return Matrix3(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8]);
}
inline Matrix3 operator*(float s, const Matrix3& rhs)
{
return Matrix3(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8]);
}
inline Vector3 operator*(const Vector3& v, const Matrix3& m)
{
return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[3] + v.y*m[4] + v.z*m[5], v.x*m[6] + v.y*m[7] + v.z*m[8]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix3& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[3] << " " << std::setw(10) << m[6] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[7] << "]\n"
<< "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[8] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX3 INLINE //////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix4
///////////////////////////////////////////////////////////////////////////
inline Matrix4::Matrix4()
{
// initially identity matrix
identity();
}
inline Matrix4::Matrix4(const float src[16])
{
set(src);
}
inline Matrix4::Matrix4(float m00, float m01, float m02, float m03,
float m04, float m05, float m06, float m07,
float m08, float m09, float m10, float m11,
float m12, float m13, float m14, float m15)
{
set(m00, m01, m02, m03, m04, m05, m06, m07, m08, m09, m10, m11, m12, m13, m14, m15);
}
inline void Matrix4::set(const float src[16])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3];
m[4] = src[4]; m[5] = src[5]; m[6] = src[6]; m[7] = src[7];
m[8] = src[8]; m[9] = src[9]; m[10]= src[10]; m[11]= src[11];
m[12]= src[12]; m[13]= src[13]; m[14]= src[14]; m[15]= src[15];
}
inline void Matrix4::set(float m00, float m01, float m02, float m03,
float m04, float m05, float m06, float m07,
float m08, float m09, float m10, float m11,
float m12, float m13, float m14, float m15)
{
m[0] = m00; m[1] = m01; m[2] = m02; m[3] = m03;
m[4] = m04; m[5] = m05; m[6] = m06; m[7] = m07;
m[8] = m08; m[9] = m09; m[10]= m10; m[11]= m11;
m[12]= m12; m[13]= m13; m[14]= m14; m[15]= m15;
}
inline void Matrix4::setRow(int index, const float row[4])
{
m[index] = row[0]; m[index + 4] = row[1]; m[index + 8] = row[2]; m[index + 12] = row[3];
}
inline void Matrix4::setRow(int index, const Vector4& v)
{
m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z; m[index + 12] = v.w;
}
inline void Matrix4::setRow(int index, const Vector3& v)
{
m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z;
}
inline void Matrix4::setColumn(int index, const float col[4])
{
m[index*4] = col[0]; m[index*4 + 1] = col[1]; m[index*4 + 2] = col[2]; m[index*4 + 3] = col[3];
}
inline void Matrix4::setColumn(int index, const Vector4& v)
{
m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z; m[index*4 + 3] = v.w;
}
inline void Matrix4::setColumn(int index, const Vector3& v)
{
m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z;
}
inline const float* Matrix4::get() const
{
return m;
}
//inline const float* Matrix4::getTranspose()
//{
// tm[0] = m[0]; tm[1] = m[4]; tm[2] = m[8]; tm[3] = m[12];
// tm[4] = m[1]; tm[5] = m[5]; tm[6] = m[9]; tm[7] = m[13];
// tm[8] = m[2]; tm[9] = m[6]; tm[10]= m[10]; tm[11]= m[14];
// tm[12]= m[3]; tm[13]= m[7]; tm[14]= m[11]; tm[15]= m[15];
// return tm;
//}
inline Matrix4& Matrix4::identity()
{
m[0] = m[5] = m[10] = m[15] = 1.0f;
m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0.0f;
return *this;
}
inline Matrix4 Matrix4::operator+(const Matrix4& rhs) const
{
return Matrix4(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3],
m[4]+rhs[4], m[5]+rhs[5], m[6]+rhs[6], m[7]+rhs[7],
m[8]+rhs[8], m[9]+rhs[9], m[10]+rhs[10], m[11]+rhs[11],
m[12]+rhs[12], m[13]+rhs[13], m[14]+rhs[14], m[15]+rhs[15]);
}
inline Matrix4 Matrix4::operator-(const Matrix4& rhs) const
{
return Matrix4(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3],
m[4]-rhs[4], m[5]-rhs[5], m[6]-rhs[6], m[7]-rhs[7],
m[8]-rhs[8], m[9]-rhs[9], m[10]-rhs[10], m[11]-rhs[11],
m[12]-rhs[12], m[13]-rhs[13], m[14]-rhs[14], m[15]-rhs[15]);
}
inline Matrix4& Matrix4::operator+=(const Matrix4& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3];
m[4] += rhs[4]; m[5] += rhs[5]; m[6] += rhs[6]; m[7] += rhs[7];
m[8] += rhs[8]; m[9] += rhs[9]; m[10]+= rhs[10]; m[11]+= rhs[11];
m[12]+= rhs[12]; m[13]+= rhs[13]; m[14]+= rhs[14]; m[15]+= rhs[15];
return *this;
}
inline Matrix4& Matrix4::operator-=(const Matrix4& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3];
m[4] -= rhs[4]; m[5] -= rhs[5]; m[6] -= rhs[6]; m[7] -= rhs[7];
m[8] -= rhs[8]; m[9] -= rhs[9]; m[10]-= rhs[10]; m[11]-= rhs[11];
m[12]-= rhs[12]; m[13]-= rhs[13]; m[14]-= rhs[14]; m[15]-= rhs[15];
return *this;
}
inline Vector4 Matrix4::operator*(const Vector4& rhs) const
{
return Vector4(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z + m[12]*rhs.w,
m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z + m[13]*rhs.w,
m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z + m[14]*rhs.w,
m[3]*rhs.x + m[7]*rhs.y + m[11]*rhs.z + m[15]*rhs.w);
}
inline Vector3 Matrix4::operator*(const Vector3& rhs) const
{
return Vector3(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z,
m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z,
m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z);
}
inline Matrix4 Matrix4::operator*(const Matrix4& n) const
{
return Matrix4(m[0]*n[0] + m[4]*n[1] + m[8]*n[2] + m[12]*n[3], m[1]*n[0] + m[5]*n[1] + m[9]*n[2] + m[13]*n[3], m[2]*n[0] + m[6]*n[1] + m[10]*n[2] + m[14]*n[3], m[3]*n[0] + m[7]*n[1] + m[11]*n[2] + m[15]*n[3],
m[0]*n[4] + m[4]*n[5] + m[8]*n[6] + m[12]*n[7], m[1]*n[4] + m[5]*n[5] + m[9]*n[6] + m[13]*n[7], m[2]*n[4] + m[6]*n[5] + m[10]*n[6] + m[14]*n[7], m[3]*n[4] + m[7]*n[5] + m[11]*n[6] + m[15]*n[7],
m[0]*n[8] + m[4]*n[9] + m[8]*n[10] + m[12]*n[11], m[1]*n[8] + m[5]*n[9] + m[9]*n[10] + m[13]*n[11], m[2]*n[8] + m[6]*n[9] + m[10]*n[10] + m[14]*n[11], m[3]*n[8] + m[7]*n[9] + m[11]*n[10] + m[15]*n[11],
m[0]*n[12] + m[4]*n[13] + m[8]*n[14] + m[12]*n[15], m[1]*n[12] + m[5]*n[13] + m[9]*n[14] + m[13]*n[15], m[2]*n[12] + m[6]*n[13] + m[10]*n[14] + m[14]*n[15], m[3]*n[12] + m[7]*n[13] + m[11]*n[14] + m[15]*n[15]);
}
inline Matrix4& Matrix4::operator*=(const Matrix4& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix4::operator==(const Matrix4& n) const
{
return (m[0] == n[0]) && (m[1] == n[1]) && (m[2] == n[2]) && (m[3] == n[3]) &&
(m[4] == n[4]) && (m[5] == n[5]) && (m[6] == n[6]) && (m[7] == n[7]) &&
(m[8] == n[8]) && (m[9] == n[9]) && (m[10]== n[10]) && (m[11]== n[11]) &&
(m[12]== n[12]) && (m[13]== n[13]) && (m[14]== n[14]) && (m[15]== n[15]);
}
inline bool Matrix4::operator!=(const Matrix4& n) const
{
return (m[0] != n[0]) || (m[1] != n[1]) || (m[2] != n[2]) || (m[3] != n[3]) ||
(m[4] != n[4]) || (m[5] != n[5]) || (m[6] != n[6]) || (m[7] != n[7]) ||
(m[8] != n[8]) || (m[9] != n[9]) || (m[10]!= n[10]) || (m[11]!= n[11]) ||
(m[12]!= n[12]) || (m[13]!= n[13]) || (m[14]!= n[14]) || (m[15]!= n[15]);
}
inline float Matrix4::operator[](int index) const
{
return m[index];
}
inline float& Matrix4::operator[](int index)
{
return m[index];
}
inline Matrix4 operator-(const Matrix4& rhs)
{
return Matrix4(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8], -rhs[9], -rhs[10], -rhs[11], -rhs[12], -rhs[13], -rhs[14], -rhs[15]);
}
inline Matrix4 operator*(float s, const Matrix4& rhs)
{
return Matrix4(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8], s*rhs[9], s*rhs[10], s*rhs[11], s*rhs[12], s*rhs[13], s*rhs[14], s*rhs[15]);
}
inline Vector4 operator*(const Vector4& v, const Matrix4& m)
{
return Vector4(v.x*m[0] + v.y*m[1] + v.z*m[2] + v.w*m[3], v.x*m[4] + v.y*m[5] + v.z*m[6] + v.w*m[7], v.x*m[8] + v.y*m[9] + v.z*m[10] + v.w*m[11], v.x*m[12] + v.y*m[13] + v.z*m[14] + v.w*m[15]);
}
inline Vector3 operator*(const Vector3& v, const Matrix4& m)
{
return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[4] + v.y*m[5] + v.z*m[6], v.x*m[8] + v.y*m[9] + v.z*m[10]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix4& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[8] << " " << std::setw(10) << m[12] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[9] << " " << std::setw(10) << m[13] << "]\n"
<< "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[6] << " " << std::setw(10) << m[10] << " " << std::setw(10) << m[14] << "]\n"
<< "[" << std::setw(10) << m[3] << " " << std::setw(10) << m[7] << " " << std::setw(10) << m[11] << " " << std::setw(10) << m[15] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX4 INLINE //////////////////////////////////////////////////////
#endif