forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_resnet.py
executable file
·45 lines (38 loc) · 1.35 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python3
import numpy as np
from PIL import Image
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from tinygrad.helpers import getenv
from extra.training import train, evaluate
from extra.models.resnet import ResNet
from extra.datasets import fetch_mnist
class ComposeTransforms:
def __init__(self, trans):
self.trans = trans
def __call__(self, x):
for t in self.trans:
x = t(x)
return x
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = fetch_mnist()
X_train = X_train.reshape(-1, 28, 28).astype(np.uint8)
X_test = X_test.reshape(-1, 28, 28).astype(np.uint8)
classes = 10
TRANSFER = getenv('TRANSFER')
model = ResNet(getenv('NUM', 18), num_classes=classes)
if TRANSFER:
model.load_from_pretrained()
lr = 5e-3
transform = ComposeTransforms([
lambda x: [Image.fromarray(xx, mode='L').resize((64, 64)) for xx in x],
lambda x: np.stack([np.asarray(xx) for xx in x], 0),
lambda x: x / 255.0,
lambda x: np.tile(np.expand_dims(x, 1), (1, 3, 1, 1)).astype(np.float32),
])
for _ in range(5):
optimizer = optim.SGD(get_parameters(model), lr=lr, momentum=0.9)
train(model, X_train, Y_train, optimizer, 100, BS=32, transform=transform)
evaluate(model, X_test, Y_test, num_classes=classes, transform=transform)
lr /= 1.2
print(f'reducing lr to {lr:.7f}')