forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmixtral.py
60 lines (54 loc) · 3.11 KB
/
mixtral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import functools, argparse, pathlib
from tqdm import tqdm
from tinygrad import Tensor, nn, Device, GlobalCounters, Variable
from tinygrad.helpers import Timing, Profiling, CI
from tinygrad.nn.state import torch_load, get_state_dict
from extra.models.llama import FeedForward, Transformer
class MixtureFeedForward:
def __init__(self, num_experts:int, dim:int, hidden_dim:int, linear=nn.Linear):
self.gate = nn.Linear(dim, num_experts, bias=False)
self.experts = [FeedForward(dim, hidden_dim, linear) for _ in range(num_experts)]
def __call__(self, x:Tensor) -> Tensor:
assert x.shape[0] == 1, "only BS=1"
g = self.gate(x).float().exp()
choice = g.data().tolist()[0][0]
top = sorted(enumerate(choice), key=lambda x: -x[1])
norm = top[0][1] + top[1][1]
e1, e2 = self.experts[top[0][0]], self.experts[top[1][0]]
scale = Tensor([top[0][1]/norm, top[1][1]/norm])
ret = e1(x.to(e1.w1.weight.device)).to(x.device) * scale[0] + \
e2(x.to(e2.w1.weight.device)).to(x.device) * scale[1]
return ret
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Mixtral in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--count", type=int, default=30, help="Max number of tokens to generate")
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument("--timing", action="store_true", help="Print timing per token")
parser.add_argument("--profile", action="store_true", help="Profile generation")
parser.add_argument("--weights", type=str, default=(pathlib.Path(__file__).parent.parent / "weights/mixtral-8x7b-32kseqlen").as_posix(),
help="Path to the downloaded weights")
args = parser.parse_args()
state = torch_load(args.weights + "/consolidated.00.pth.b")
model = Transformer(n_layers=32, dim=4096, hidden_dim=14336, n_heads=32, n_kv_heads=8, norm_eps=1e-5, vocab_size=32000, feed_forward=functools.partial(MixtureFeedForward, 8), jit=False)
model_state_dict = get_state_dict(model)
for k in (t := tqdm(state, disable=CI)):
if 'feed_forward.experts.' in k:
expert_no = int(k.split('feed_forward.experts.')[1].split('.')[0])
device = Device.DEFAULT + ":" + str((expert_no//2)+1)
else:
device = Device.DEFAULT
t.set_description(f"ram used: {GlobalCounters.mem_used/1e9:5.2f} GB, loading {k} to {device}")
model_state_dict[k].replace(state[k].to(device).half()).realize()
if CI: print(f"ram used: {GlobalCounters.mem_used/1e9:5.2f} GB")
from sentencepiece import SentencePieceProcessor
spp = SentencePieceProcessor(model_file=args.weights + "/tokenizer.model")
toks = [spp.bos_id()]
start_pos = 0
for i in range(args.count):
GlobalCounters.reset()
with Profiling(sort="time", frac=0.1, enabled=args.profile):
with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/sec"):
tok = model(Tensor([toks[start_pos:]]), 0 if start_pos == 0 else Variable("start_pos", 1, 1024).bind(start_pos), args.temperature).item()
toks.append(tok)
start_pos += 1
print(spp.decode(toks))