forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama.py
executable file
·562 lines (499 loc) · 24.9 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
#!/usr/bin/env python3
# pip3 install sentencepiece tiktoken blobfile
#import typeguard.importhook
#typeguard.importhook.install_import_hook('tinygrad')
from pathlib import Path
from typing import List
import argparse, json
import numpy as np
np.set_printoptions(linewidth=200)
from tinygrad.helpers import Context, Timing, Profiling, getenv, DEBUG, colored
from tinygrad import Tensor, Device, GlobalCounters, dtypes, nn
from tinygrad.nn.state import safe_load, torch_load, load_state_dict, get_parameters
from extra.models.llama import Transformer, convert_from_huggingface, fix_bf16
from sentencepiece import SentencePieceProcessor
import tiktoken, sys
from tiktoken.load import load_tiktoken_bpe
MAX_CONTEXT = getenv("MAX_CONTEXT", 4096)
class TikToken:
num_reserved_special_tokens: int = 256
pat_str: str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" # noqa: E501
def __init__(self, model_file):
mergeable_ranks = load_tiktoken_bpe(model_file)
self.num_base_tokens = len(mergeable_ranks)
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [
f"<|reserved_special_token_{i}|>"
for i in range(5, self.num_reserved_special_tokens - 5)
]
self.special_tokens = {
token: self.num_base_tokens + i for i, token in enumerate(special_tokens)
}
self.model = tiktoken.Encoding(
name=model_file,
pat_str=self.pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
def decode(self, toks): return self.model.decode([t for t in toks if t < self.num_base_tokens])
def encode(self, s): return self.model.encode(s)
def bos_id(self): return self.special_tokens["<|begin_of_text|>"]
def eos_id(self): return self.special_tokens["<|end_of_text|>"]
def vocab_size(self): return self.model.n_vocab
# calculating params:
# traditionally, the MLP in the transformer architecture has hidden_dim = dim*4 [arxiv/1706.03762, 3.3]
# however, Llama uses SwiGLU. in order to preserve param count to original transformer arch, hidden_dim must be = 2/3 * (dim*4) [arxiv/2002.05202]
# for models using MQA (n_kv_heads != n_heads), preserving param count means hidden dim must be further multiplied by 1.3 [arxiv/2307.09288, A.2.1]
MODEL_PARAMS = {
"1": {
"7B": {
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"30B": {
"args": {"dim": 6656, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 17920},
"files": 4,
},
"65B": {
"args": {"dim": 8192, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 22016},
"files": 8,
},
"tokenizer": SentencePieceProcessor,
},
"2": {
"7B": {
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"70B": {
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 28672},
"files": 8,
},
"tokenizer": SentencePieceProcessor,
},
"3": {
"8B": {
"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336},
"files": 1,
},
"8B-Chat": {
"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336},
"files": 1,
},
"70B": {
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672},
"files": 8,
},
"70B-Chat": {
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672},
"files": 8,
},
"tokenizer": TikToken,
},
"code": {
"7B": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
"files": 1,
},
"7B-Python": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"7B-Instruct": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
"files": 2,
},
"13B-Python": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"13B-Instruct": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
"files": 2,
},
"34B": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
"34B-Python": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
"34B-Instruct": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
"tokenizer": SentencePieceProcessor,
},
"tiny": {
"1B": {
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 5632},
"files": 1,
},
"1B-Chat": {
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32003, "hidden_dim": 5632},
"files": 1,
},
"tokenizer": SentencePieceProcessor,
}
}
# **** helper functions ****
def concat_weights(models, device=None):
def convert(name) -> Tensor:
disk_tensors: List[Tensor] = [model[name] for model in models]
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
return disk_tensors[0].to(device=device)
axis = 1 if name.startswith("tok_embeddings.") or name.endswith(".attention.wo.weight") or name.endswith(".feed_forward.w2.weight") else 0
lazy_tensors = [data.to(device=device) for data in disk_tensors]
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
return {name: convert(name) for name in {name: None for model in models for name in model}}
def load(fn:str):
if fn.endswith('.index.json'):
with open(fn) as fp: weight_map = json.load(fp)['weight_map']
parts = {n: load(str(Path(fn).parent / Path(n).name)) for n in set(weight_map.values())}
return {k: parts[n][k] for k, n in weight_map.items()}
elif fn.endswith(".safetensors"):
return safe_load(fn)
else:
return torch_load(fn)
class Int8Linear:
def __init__(self, in_features, out_features, bias=False):
assert bias == False
self.weight = Tensor.ones(out_features, in_features, dtype=dtypes.int8)
self.scale = Tensor.ones(out_features, dtype=dtypes.half)
def __call__(self, x):
return x.dot(self.weight.cast(dtype=dtypes.half).T*self.scale)
@staticmethod
def quantize(tensors, device):
new_tensors = {}
for name,v in tensors.items():
if "feed_forward" in name or "attention.w" in name or name == "output.weight":
assert "weight" in name, name
scale = v.abs().max(axis=1) / 127.0
int8_weight = (v.T/scale).T.cast(dtype=dtypes.int8)
new_tensors[name] = int8_weight
new_tensors[name.replace('weight', 'scale')] = scale
if isinstance(device, tuple):
new_tensors[name].shard_(device, axis=-1)
new_tensors[name.replace('weight', 'scale')].shard_(device, axis=None)
else:
new_tensors[name] = v
return new_tensors
def NF4Linear(block_size):
CODE = Tensor([
-1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0,
0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0,
], dtype=dtypes.float16)
class _NF4Linear:
def __init__(self, in_features, out_features, bias=False):
assert not bias, "bias not supported"
self.in_features, self.out_features = in_features, out_features
self.weight = Tensor.empty(int(out_features * in_features / 2), dtype=dtypes.uint8)
self.scale = Tensor.empty(int(out_features * in_features / block_size), 1, dtype=dtypes.float16)
def __call__(self, x: Tensor) -> Tensor:
high_bits = self.weight
low_bits = self.weight.lshift(4).contiguous()
unpacked = Tensor.stack([high_bits, low_bits], dim=-1).rshift(4)
unscaled = CODE[unpacked].to(x.device).reshape(-1, block_size) * self.scale
return x.linear(unscaled.reshape(self.out_features, self.in_features).T)
@staticmethod
def quantize(state_dict: dict[str, Tensor], device) -> dict[str, Tensor]:
new_state_dict = {}
for k, v in state_dict.items():
if "feed_forward" in k or "attention.w" in k or k == "output.weight":
grouped = v.reshape(-1, block_size)
scale = (grouped.abs().max(axis=1, keepdim=True))
coded = ((grouped / scale).unsqueeze(-1) - CODE.to(v.device)).abs().argmin(axis=-1).cast(dtypes.uint8).flatten()
new_state_dict[k] = coded[::2] * 2 ** 4 + coded[1::2]
new_state_dict[k.replace(".weight", ".scale")] = scale.cast(dtypes.float16)
if isinstance(device, tuple):
new_state_dict[k].shard_(device, axis=-1)
new_state_dict[k.replace('weight', 'scale')].shard_(device, axis=None)
else:
new_state_dict[k] = v
return new_state_dict
return _NF4Linear
class LLaMa:
@staticmethod
def build(model_path, tokenizer_path, model_gen="1", model_size="7B", quantize=None, device=None):
params = MODEL_PARAMS[model_gen][model_size]
tokenizer = MODEL_PARAMS[model_gen]['tokenizer'](model_file=str(tokenizer_path))
assert tokenizer.vocab_size() == params["args"]["vocab_size"], f"{tokenizer.vocab_size()=} not equal to {params['args']['vocab_size']}"
jit = bool(getenv("JIT", 1))
if quantize == "int8": model = Transformer(**params["args"], linear=Int8Linear, max_context=MAX_CONTEXT, jit=jit)
elif quantize == "nf4": model = Transformer(**params["args"], linear=NF4Linear(64), max_context=MAX_CONTEXT, jit=jit)
else: model = Transformer(**params["args"], max_context=MAX_CONTEXT, jit=jit)
if model_path.is_dir():
weights = concat_weights([load(filename) for filename in [f"{model_path}/consolidated.{i:02d}.pth" for i in range(params["files"])]], device[0] if isinstance(device, tuple) else device)
else:
weights = load(str(model_path))
if "model.embed_tokens.weight" in weights:
weights = convert_from_huggingface(weights, model, params["args"]["n_heads"], params["args"].get("n_kv_heads", params["args"]["n_heads"]))
weights = fix_bf16(weights)
if quantize is not None:
with Context(BEAM=0):
weights = model.output.__class__.quantize(weights, device)
for _,v in weights.items(): v.realize()
if isinstance(device, tuple):
for k,v in nn.state.get_state_dict(model).items():
if 'scale' in k: v.shard_(device, axis=None) # from quantized
elif '.attention.' in k: v.shard_(device, axis=-1)
elif '.feed_forward.' in k: v.shard_(device, axis=-1)
elif 'tok_embeddings.weight' in k: v.shard_(device, axis=-1)
elif 'output.weight' in k: v.shard_(device, axis=-1)
#elif k.endswith('.weight'): v.shard_(device, axis=-1)
#elif 'norm.' in k: v.shard_(device, axis=-1)
else: v.shard_(device, axis=None)
#print(k, v.shape, v.lazydata.axis)
load_state_dict(model, weights, strict=False, consume=True)
return LLaMa(model, tokenizer)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def greedy_until(self, prompt:str, until, max_length, temperature):
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
start_pos = 0
for i in range(max_length):
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, temperature).realize()
probs_np = probs.numpy()
tok = int(np.random.choice(len(probs_np), p=probs_np))
start_pos = len(toks)
toks.append(tok)
if tok == self.tokenizer.eos_id(): break
output = self.tokenizer.decode(toks)
for s in until:
if output.endswith(s): return output[0:-len(s)]
return output
# **** main code ****
r"""
test:
python3 examples/llama.py --temperature=0 --count=50 --prompt="Hello."
output:
Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
test:
python3 examples/llama.py --gen='2' --temperature=0 --count=50 --prompt="Hello."
output:
Hello. I'm a 20 year old girl who is looking for a good lay in Palm Coast. I don't care whether it's at your place or not, as long as it's clean.
test:
python3 examples/llama.py --gen="code" --temperature=0.2 --count=50 --prompt="\
import argparse
def main(string: str):
print(string)
print(string[::-1])
if __name__ == "__main__":"
output:
parser = argparse.ArgumentParser()
parser.add_argument('string', type=str, help='string to be reversed')
args = parser.parse_args()
main(args.string)
test:
python3 examples/llama.py --gen="code" --size="7B-Python" --temperature=0.2 --count=70 --prompt="def add_elements(arr,k):"
output:
for i in range(len(arr)):
arr[i] += k
return arr
arr = [1, 2, 3, 4, 5]
k = 2
print(add_elements(arr, k))
test:
python3 examples/llama.py --gen="code" --size="7B-Instruct" --temperature=0.2 --count=120 --prompt="write a function in c++ that adds three float numbers"
output:
\begin{code}
#include<iostream>
using namespace std;
float add(float a, float b, float c)
{
return a+b+c;
}
int main()
{
float a, b, c;
cout<<"Enter three numbers: ";
cin>>a>>b>>c;
cout<<"The sum is: "<<add(a,b,c);
return 0;
}
\end{code}
"""
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
parser = argparse.ArgumentParser(description="Run LLaMA in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--prompt", type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
parser.add_argument("--count", type=int, default=1000, help="Max number of tokens to generate")
parser.add_argument("--personality", type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument("--timing", action="store_true", help="Print timing per token")
parser.add_argument("--profile", action="store_true", help="Output profile data to out.prof")
parser.add_argument("--gen", default="1", help=f"""Generation of the model to use {list(MODEL_PARAMS.keys())}""")
parser.add_argument("--size", type=str, default=None, help=f"""Size of model to use {", ".join([f"{list(v.keys())} for gen '{k}'" for k, v in MODEL_PARAMS.items()])}""")
parser.add_argument("--quantize", type=str, default=None, help="Quantize the weights to int8 or nf4 in memory")
parser.add_argument("--model", type=Path, default=None, help="Folder with the original weights to load, or single .index.json, .safetensors or .bin file")
parser.add_argument("--shard", type=int, default=1, help="number of devices to load the weights to")
args = parser.parse_args()
if args.gen not in MODEL_PARAMS: raise ValueError("Invalid model generation")
if args.size is None: args.size = list(MODEL_PARAMS[args.gen].items())[0][0]
chatbot = args.prompt == None
# *** prompt engineers work here ****
if args.personality.lower() == "stacy":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
You are Stacy!
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
}
user_delim = "\nUser: "
resp_delim = "Stacy: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "george":
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
You are an AI version of George Hotz. You act as much as you can like George.
You are one of the greatest computer experts in the world.
You have singlehandedly won programming and hacking competitions.
You are trying your best to help the User.
You are verbose, honest, and accurate when you answer questions.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I'm am an AI version of George Hotz.",
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
}
user_delim = "\nUser: "
resp_delim = "George: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "gary":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
You are Gary!
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I am Gary. I used to sell cars.",
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
}
user_delim = "\nUser: "
resp_delim = "Gary: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "lexie":
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
You are Lexie!
You grew up in Ohio, but moved out to LA after college to try to become an actress.
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
You met Chad on Tinder, and made plans to meet him at a local dive bar.
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
After you are done speaking, output [EOS]. You are not Chad.
<CHAT LOG>
"""
examples = {
"hi lexie": "hi chad, glad we finally met up!",
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
}
user_delim = "\nChad: "
resp_delim = "Lexie: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
# *** prompt engineers stop here ****
LLAMA_SUFFIX = {"1": "", "2": "-2", "3": "-3", "code": "-code", "tiny": "-tiny"}[args.gen]
MODEL_PATH = args.model or Path(__file__).parents[1] / f"weights/LLaMA{LLAMA_SUFFIX}/{args.size}"
TOKENIZER_PATH = (MODEL_PATH if MODEL_PATH.is_dir() else MODEL_PATH.parent) / "tokenizer.model"
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(args.shard)) if args.shard > 1 else Device.DEFAULT
llama = LLaMa.build(MODEL_PATH, TOKENIZER_PATH, model_gen=args.gen, model_size=args.size, quantize=args.quantize, device=device)
param_bytes = sum(x.lazydata.size * x.dtype.itemsize for x in get_parameters(llama.model))
outputted = pre_prompt if chatbot else args.prompt
start_pos, toks = 0, [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
if chatbot:
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
start_pos = len(toks)
with Timing():
llama.model(Tensor([toks], device=device), 0, args.temperature).realize() # NOTE: outputs are not used
print(outputted, end='', flush=True)
# chatbot loop
while 1:
# add tokens from user in chatbot mode
if chatbot:
user_prompt = user_delim + input(user_delim) + "\n"
outputted += user_prompt
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
assert toks == new_toks[:len(toks)]
toks = new_toks
assert outputted == llama.tokenizer.decode(toks)
for i in range(args.count):
GlobalCounters.reset()
if args.timing or args.profile: print("")
st = GlobalCounters.time_sum_s
with Profiling(enabled=args.profile):
with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/s, {GlobalCounters.global_mem/x:.2f} GB/s, param {param_bytes/x:.2f} GB/s"):
with Timing("enqueue in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s, param {param_bytes*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=args.timing):
tok_tensor = llama.model(Tensor([toks[start_pos:]], device=device), start_pos, args.temperature)
tok = tok_tensor.item()
# use the kv cache
start_pos = len(toks)
# add the new token
toks.append(tok)
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
cur = llama.tokenizer.decode(toks)
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
# stop after you have your answer
if chatbot and outputted.endswith(end_delim): break
if not chatbot: break
# validate output!
if args.temperature == 0 and args.count == 10 and args.prompt == "Hello." and not args.quantize:
text = llama.tokenizer.decode(toks)
key = (args.gen, args.size)
expected = {
("1", "7B"): "Hello. I'm a 20 year old male",
("2", "7B"): "Hello. I'm a 20 year old girl",
("2", "70B"): "Hello. I am a 20 year old female.",
("3", "8B"): "Hello. I am a 20 year old female. I",
}
try:
assert text == expected[key], f"invalid output: `{colored(text, 'red')}` != `{expected[key]}`"
print("\n" + colored("output validated", "green")) # NOTE: "\n" iside colored does not render the color in github action
except KeyError:
pass