forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhlb_cifar10.py
434 lines (375 loc) · 19 KB
/
hlb_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python3
# tinygrad implementation of https://github.com/tysam-code/hlb-CIFAR10/blob/main/main.py
# https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/
# https://siboehm.com/articles/22/CUDA-MMM
import random, time
import numpy as np
from typing import Optional
from extra.datasets import fetch_cifar, cifar_mean, cifar_std
from extra.lr_scheduler import OneCycleLR
from tinygrad import nn, dtypes, Tensor, Device, GlobalCounters, TinyJit
from tinygrad.nn.state import get_state_dict, get_parameters
from tinygrad.nn import optim
from tinygrad.helpers import Context, BEAM, WINO, getenv, colored, prod
from tinygrad.multi import MultiLazyBuffer
BS, STEPS = getenv("BS", 512), getenv("STEPS", 1000)
EVAL_BS = getenv("EVAL_BS", BS)
GPUS = [f'{Device.DEFAULT}:{i}' for i in range(getenv("GPUS", 1))]
assert BS % len(GPUS) == 0, f"{BS=} is not a multiple of {len(GPUS)=}, uneven multi GPU is slow"
assert EVAL_BS % len(GPUS) == 0, f"{EVAL_BS=} is not a multiple of {len(GPUS)=}, uneven multi GPU is slow"
class UnsyncedBatchNorm:
def __init__(self, sz:int, eps=1e-5, affine=True, track_running_stats=True, momentum=0.1, num_devices=len(GPUS)):
self.eps, self.track_running_stats, self.momentum = eps, track_running_stats, momentum
self.num_devices = num_devices
if affine: self.weight, self.bias = Tensor.ones(sz, dtype=dtypes.float32), Tensor.zeros(sz, dtype=dtypes.float32)
else: self.weight, self.bias = None, None
self.running_mean = Tensor.zeros(num_devices, sz, dtype=dtypes.float32, requires_grad=False)
self.running_var = Tensor.ones(num_devices, sz, dtype=dtypes.float32, requires_grad=False)
self.num_batches_tracked = Tensor.zeros(1, dtype=dtypes.int, requires_grad=False)
def __call__(self, x:Tensor):
if isinstance(x.lazydata, MultiLazyBuffer): assert x.lazydata.axis is None or x.lazydata.axis == 0 and len(x.lazydata.lbs) == self.num_devices
xr = x.reshape(self.num_devices, -1, *x.shape[1:]).cast(dtypes.float32)
batch_mean, batch_invstd = self.calc_stats(xr)
ret = xr.batchnorm(
self.weight.reshape(1, -1).expand((self.num_devices, -1)),
self.bias.reshape(1, -1).expand((self.num_devices, -1)),
batch_mean, batch_invstd, axis=(0, 2))
return ret.reshape(x.shape).cast(x.dtype)
def calc_stats(self, x:Tensor):
if Tensor.training:
# This requires two full memory accesses to x
# https://github.com/pytorch/pytorch/blob/c618dc13d2aa23625cb0d7ada694137532a4fa33/aten/src/ATen/native/cuda/Normalization.cuh
# There's "online" algorithms that fix this, like https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm
batch_mean = x.mean(axis=(1,3,4))
y = (x - batch_mean.detach().reshape(shape=[batch_mean.shape[0], 1, -1, 1, 1])) # d(var)/d(mean) = 0
batch_var = (y*y).mean(axis=(1,3,4))
batch_invstd = batch_var.add(self.eps).pow(-0.5)
# NOTE: wow, this is done all throughout training in most PyTorch models
if self.track_running_stats:
self.running_mean.assign((1-self.momentum) * self.running_mean + self.momentum * batch_mean.detach().cast(self.running_mean.dtype))
batch_var_adjust = prod(y.shape[1:])/(prod(y.shape[1:])-y.shape[2])
self.running_var.assign((1-self.momentum) * self.running_var + self.momentum * batch_var_adjust * batch_var.detach().cast(self.running_var.dtype))
self.num_batches_tracked += 1
else:
batch_mean = self.running_mean
# NOTE: this can be precomputed for static inference. we expand it here so it fuses
batch_invstd = self.running_var.reshape(self.running_var.shape[0], 1, -1, 1, 1).expand(x.shape).add(self.eps).rsqrt()
return batch_mean, batch_invstd
class BatchNorm(nn.BatchNorm2d if getenv("SYNCBN") else UnsyncedBatchNorm):
def __init__(self, num_features):
super().__init__(num_features, track_running_stats=False, eps=1e-12, momentum=0.85, affine=True)
self.weight.requires_grad = False
self.bias.requires_grad = True
class ConvGroup:
def __init__(self, channels_in, channels_out):
self.conv1 = nn.Conv2d(channels_in, channels_out, kernel_size=3, padding=1, bias=False)
self.conv2 = nn.Conv2d(channels_out, channels_out, kernel_size=3, padding=1, bias=False)
self.norm1 = BatchNorm(channels_out)
self.norm2 = BatchNorm(channels_out)
def __call__(self, x):
x = self.conv1(x)
x = x.max_pool2d(2)
x = x.float()
x = self.norm1(x)
x = x.cast(dtypes.default_float)
x = x.quick_gelu()
residual = x
x = self.conv2(x)
x = x.float()
x = self.norm2(x)
x = x.cast(dtypes.default_float)
x = x.quick_gelu()
return x + residual
class SpeedyResNet:
def __init__(self, W):
self.whitening = W
self.net = [
nn.Conv2d(12, 32, kernel_size=1, bias=False),
lambda x: x.quick_gelu(),
ConvGroup(32, 64),
ConvGroup(64, 256),
ConvGroup(256, 512),
lambda x: x.max((2,3)),
nn.Linear(512, 10, bias=False),
lambda x: x / 9.,
]
def __call__(self, x, training=True):
# pad to 32x32 because whitening conv creates 31x31 images that are awfully slow to compute with
# TODO: remove the pad but instead let the kernel optimize itself
forward = lambda x: x.conv2d(self.whitening).pad2d((1,0,0,1)).sequential(self.net)
return forward(x) if training else (forward(x) + forward(x[..., ::-1])) / 2.
# hyper-parameters were exactly the same as the original repo
bias_scaler = 58
hyp = {
'seed' : 209,
'opt': {
'bias_lr': 1.76 * bias_scaler/512,
'non_bias_lr': 1.76 / 512,
'bias_decay': 1.08 * 6.45e-4 * BS/bias_scaler,
'non_bias_decay': 1.08 * 6.45e-4 * BS,
'final_lr_ratio': 0.025,
'initial_div_factor': 1e6,
'label_smoothing': 0.20,
'momentum': 0.85,
'percent_start': 0.23,
'loss_scale_scaler': 1./128 # (range: ~1/512 - 16+, 1/128 w/ FP16)
},
'net': {
'kernel_size': 2, # kernel size for the whitening layer
'cutmix_size': 3,
'cutmix_steps': 499,
'pad_amount': 2
},
'ema': {
'steps': 399,
'decay_base': .95,
'decay_pow': 1.6,
'every_n_steps': 5,
},
}
def train_cifar():
def set_seed(seed):
Tensor.manual_seed(seed)
random.seed(seed)
# ========== Model ==========
def whitening(X, kernel_size=hyp['net']['kernel_size']):
def _cov(X):
return (X.T @ X) / (X.shape[0] - 1)
def _patches(data, patch_size=(kernel_size,kernel_size)):
h, w = patch_size
c = data.shape[1]
axis = (2, 3)
return np.lib.stride_tricks.sliding_window_view(data, window_shape=(h,w), axis=axis).transpose((0,3,2,1,4,5)).reshape((-1,c,h,w))
def _eigens(patches):
n,c,h,w = patches.shape
Σ = _cov(patches.reshape(n, c*h*w))
Λ, V = np.linalg.eigh(Σ, UPLO='U')
return np.flip(Λ, 0), np.flip(V.T.reshape(c*h*w, c, h, w), 0)
# NOTE: np.linalg.eigh only supports float32 so the whitening layer weights need to be converted to float16 manually
Λ, V = _eigens(_patches(X.float().numpy()))
W = V/np.sqrt(Λ+1e-2)[:,None,None,None]
return Tensor(W.astype(np.float32), requires_grad=False).cast(dtypes.default_float)
# ========== Loss ==========
def cross_entropy(x:Tensor, y:Tensor, reduction:str='mean', label_smoothing:float=0.0) -> Tensor:
divisor = y.shape[1]
assert isinstance(divisor, int), "only supported int divisor"
y = (1 - label_smoothing)*y + label_smoothing / divisor
ret = -x.log_softmax(axis=1).mul(y).sum(axis=1)
if reduction=='none': return ret
if reduction=='sum': return ret.sum()
if reduction=='mean': return ret.mean()
raise NotImplementedError(reduction)
# ========== Preprocessing ==========
# NOTE: this only works for RGB in format of NxCxHxW and pads the HxW
def pad_reflect(X, size=2) -> Tensor:
X = X[...,:,1:size+1].flip(-1).cat(X, X[...,:,-(size+1):-1].flip(-1), dim=-1)
X = X[...,1:size+1,:].flip(-2).cat(X, X[...,-(size+1):-1,:].flip(-2), dim=-2)
return X
# return a binary mask in the format of BS x C x H x W where H x W contains a random square mask
def make_square_mask(shape, mask_size) -> Tensor:
BS, _, H, W = shape
low_x = Tensor.randint(BS, low=0, high=W-mask_size).reshape(BS,1,1,1)
low_y = Tensor.randint(BS, low=0, high=H-mask_size).reshape(BS,1,1,1)
idx_x = Tensor.arange(W, dtype=dtypes.int32).reshape((1,1,1,W))
idx_y = Tensor.arange(H, dtype=dtypes.int32).reshape((1,1,H,1))
return (idx_x >= low_x) * (idx_x < (low_x + mask_size)) * (idx_y >= low_y) * (idx_y < (low_y + mask_size))
def random_crop(X:Tensor, crop_size=32):
mask = make_square_mask(X.shape, crop_size)
mask = mask.expand((-1,3,-1,-1))
X_cropped = Tensor(X.numpy()[mask.numpy()])
return X_cropped.reshape((-1, 3, crop_size, crop_size))
def cutmix(X:Tensor, Y:Tensor, mask_size=3):
# fill the square with randomly selected images from the same batch
mask = make_square_mask(X.shape, mask_size)
order = list(range(0, X.shape[0]))
random.shuffle(order)
X_patch = Tensor(X.numpy()[order], device=X.device, dtype=X.dtype)
Y_patch = Tensor(Y.numpy()[order], device=Y.device, dtype=Y.dtype)
X_cutmix = mask.where(X_patch, X)
mix_portion = float(mask_size**2)/(X.shape[-2]*X.shape[-1])
Y_cutmix = mix_portion * Y_patch + (1. - mix_portion) * Y
return X_cutmix, Y_cutmix
# the operations that remain inside batch fetcher is the ones that involves random operations
def fetch_batches(X_in:Tensor, Y_in:Tensor, BS:int, is_train:bool):
step, epoch = 0, 0
while True:
st = time.monotonic()
X, Y = X_in, Y_in
if is_train:
# TODO: these are not jitted
if getenv("RANDOM_CROP", 1):
X = random_crop(X, crop_size=32)
if getenv("RANDOM_FLIP", 1):
X = (Tensor.rand(X.shape[0],1,1,1) < 0.5).where(X.flip(-1), X) # flip LR
if getenv("CUTMIX", 1):
if step >= hyp['net']['cutmix_steps']:
X, Y = cutmix(X, Y, mask_size=hyp['net']['cutmix_size'])
order = list(range(0, X.shape[0]))
random.shuffle(order)
X, Y = X.numpy()[order], Y.numpy()[order]
else:
X, Y = X.numpy(), Y.numpy()
et = time.monotonic()
print(f"shuffling {'training' if is_train else 'test'} dataset in {(et-st)*1e3:.2f} ms ({epoch=})")
for i in range(0, X.shape[0], BS):
# pad the last batch # TODO: not correct for test
batch_end = min(i+BS, Y.shape[0])
x = Tensor(X[batch_end-BS:batch_end], device=X_in.device, dtype=X_in.dtype)
y = Tensor(Y[batch_end-BS:batch_end], device=Y_in.device, dtype=Y_in.dtype)
step += 1
yield x, y
epoch += 1
if not is_train: break
transform = [
lambda x: x / 255.0,
lambda x: x.reshape((-1,3,32,32)) - Tensor(cifar_mean, device=x.device, dtype=x.dtype).reshape((1,3,1,1)),
lambda x: x / Tensor(cifar_std, device=x.device, dtype=x.dtype).reshape((1,3,1,1)),
]
class modelEMA():
def __init__(self, w, net):
# self.model_ema = copy.deepcopy(net) # won't work for opencl due to unpickeable pyopencl._cl.Buffer
self.net_ema = SpeedyResNet(w)
for net_ema_param, net_param in zip(get_state_dict(self.net_ema).values(), get_state_dict(net).values()):
net_ema_param.requires_grad = False
net_ema_param.assign(net_param.numpy())
@TinyJit
def update(self, net, decay):
# TODO with Tensor.no_grad()
Tensor.no_grad = True
for net_ema_param, (param_name, net_param) in zip(get_state_dict(self.net_ema).values(), get_state_dict(net).items()):
# batchnorm currently is not being tracked
if not ("num_batches_tracked" in param_name) and not ("running" in param_name):
net_ema_param.assign(net_ema_param.detach()*decay + net_param.detach()*(1.-decay)).realize()
Tensor.no_grad = False
set_seed(getenv('SEED', hyp['seed']))
X_train, Y_train, X_test, Y_test = fetch_cifar()
# load data and label into GPU and convert to dtype accordingly
X_train, X_test = X_train.to(device=Device.DEFAULT).float(), X_test.to(device=Device.DEFAULT).float()
Y_train, Y_test = Y_train.to(device=Device.DEFAULT), Y_test.to(device=Device.DEFAULT)
# one-hot encode labels
Y_train, Y_test = Y_train.one_hot(10), Y_test.one_hot(10)
# preprocess data
X_train, X_test = X_train.sequential(transform), X_test.sequential(transform)
# precompute whitening patches
W = whitening(X_train)
# initialize model weights
model = SpeedyResNet(W)
# padding is not timed in the original repo since it can be done all at once
X_train = pad_reflect(X_train, size=hyp['net']['pad_amount'])
# Convert data and labels to the default dtype
X_train, Y_train = X_train.cast(dtypes.default_float), Y_train.cast(dtypes.default_float)
X_test, Y_test = X_test.cast(dtypes.default_float), Y_test.cast(dtypes.default_float)
if len(GPUS) > 1:
for k, x in get_state_dict(model).items():
if not getenv('SYNCBN') and ('running_mean' in k or 'running_var' in k):
x.shard_(GPUS, axis=0)
else:
x.to_(GPUS)
# parse the training params into bias and non-bias
params_dict = get_state_dict(model)
params_bias = []
params_non_bias = []
for params in params_dict:
if params_dict[params].requires_grad is not False:
if 'bias' in params:
params_bias.append(params_dict[params])
else:
params_non_bias.append(params_dict[params])
opt_bias = optim.SGD(params_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['bias_decay'])
opt_non_bias = optim.SGD(params_non_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['non_bias_decay'])
# NOTE taken from the hlb_CIFAR repository, might need to be tuned
initial_div_factor = hyp['opt']['initial_div_factor']
final_lr_ratio = hyp['opt']['final_lr_ratio']
pct_start = hyp['opt']['percent_start']
lr_sched_bias = OneCycleLR(opt_bias, max_lr=hyp['opt']['bias_lr'], pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS)
lr_sched_non_bias = OneCycleLR(opt_non_bias, max_lr=hyp['opt']['non_bias_lr'], pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS)
def train_step(model, optimizer, lr_scheduler, X, Y):
out = model(X)
loss_batchsize_scaler = 512/BS
loss = cross_entropy(out, Y, reduction='none', label_smoothing=hyp['opt']['label_smoothing']).mul(hyp['opt']['loss_scale_scaler']*loss_batchsize_scaler).sum().div(hyp['opt']['loss_scale_scaler'])
if not getenv("DISABLE_BACKWARD"):
# index 0 for bias and 1 for non-bias
optimizer[0].zero_grad()
optimizer[1].zero_grad()
loss.backward()
optimizer[0].step()
optimizer[1].step()
lr_scheduler[0].step()
lr_scheduler[1].step()
return loss.realize()
train_step_jitted = TinyJit(train_step)
def eval_step(model, X, Y):
out = model(X, training=False)
loss = cross_entropy(out, Y, reduction='mean')
correct = out.argmax(axis=1) == Y.argmax(axis=1)
return correct.realize(), loss.realize()
eval_step_jitted = TinyJit(eval_step)
eval_step_ema_jitted = TinyJit(eval_step)
# 97 steps in 2 seconds = 20ms / step
# step is 1163.42 GOPS = 56 TFLOPS!!!, 41% of max 136
# 4 seconds for tfloat32 ~ 28 TFLOPS, 41% of max 68
# 6.4 seconds for float32 ~ 17 TFLOPS, 50% of max 34.1
# 4.7 seconds for float32 w/o channels last. 24 TFLOPS. we get 50ms then i'll be happy. only 64x off
# https://www.anandtech.com/show/16727/nvidia-announces-geforce-rtx-3080-ti-3070-ti-upgraded-cards-coming-in-june
# 136 TFLOPS is the theoretical max w float16 on 3080 Ti
model_ema: Optional[modelEMA] = None
projected_ema_decay_val = hyp['ema']['decay_base'] ** hyp['ema']['every_n_steps']
i = 0
eval_acc_pct = 0.0
batcher = fetch_batches(X_train, Y_train, BS=BS, is_train=True)
with Tensor.train():
st = time.monotonic()
while i <= STEPS:
if i % getenv("EVAL_STEPS", STEPS) == 0 and i > 1 and not getenv("DISABLE_BACKWARD"):
# Use Tensor.training = False here actually bricks batchnorm, even with track_running_stats=True
corrects = []
corrects_ema = []
losses = []
losses_ema = []
for Xt, Yt in fetch_batches(X_test, Y_test, BS=EVAL_BS, is_train=False):
if len(GPUS) > 1:
Xt.shard_(GPUS, axis=0)
Yt.shard_(GPUS, axis=0)
correct, loss = eval_step_jitted(model, Xt, Yt)
losses.append(loss.numpy().tolist())
corrects.extend(correct.numpy().tolist())
if model_ema:
correct_ema, loss_ema = eval_step_ema_jitted(model_ema.net_ema, Xt, Yt)
losses_ema.append(loss_ema.numpy().tolist())
corrects_ema.extend(correct_ema.numpy().tolist())
# collect accuracy across ranks
correct_sum, correct_len = sum(corrects), len(corrects)
if model_ema: correct_sum_ema, correct_len_ema = sum(corrects_ema), len(corrects_ema)
eval_acc_pct = correct_sum/correct_len*100.0
if model_ema: acc_ema = correct_sum_ema/correct_len_ema*100.0
print(f"eval {correct_sum}/{correct_len} {eval_acc_pct:.2f}%, {(sum(losses)/len(losses)):7.2f} val_loss STEP={i} (in {(time.monotonic()-st)*1e3:.2f} ms)")
if model_ema: print(f"eval ema {correct_sum_ema}/{correct_len_ema} {acc_ema:.2f}%, {(sum(losses_ema)/len(losses_ema)):7.2f} val_loss STEP={i}")
if STEPS == 0 or i == STEPS: break
GlobalCounters.reset()
X, Y = next(batcher)
if len(GPUS) > 1:
X.shard_(GPUS, axis=0)
Y.shard_(GPUS, axis=0)
with Context(BEAM=getenv("LATEBEAM", BEAM.value), WINO=getenv("LATEWINO", WINO.value)):
loss = train_step_jitted(model, [opt_bias, opt_non_bias], [lr_sched_bias, lr_sched_non_bias], X, Y)
et = time.monotonic()
loss_cpu = loss.numpy()
# EMA for network weights
if getenv("EMA") and i > hyp['ema']['steps'] and (i+1) % hyp['ema']['every_n_steps'] == 0:
if model_ema is None:
model_ema = modelEMA(W, model)
model_ema.update(model, Tensor([projected_ema_decay_val*(i/STEPS)**hyp['ema']['decay_pow']]))
cl = time.monotonic()
device_str = loss.device if isinstance(loss.device, str) else f"{loss.device[0]} * {len(loss.device)}"
# 53 221.74 ms run, 2.22 ms python, 219.52 ms CL, 803.39 loss, 0.000807 LR, 4.66 GB used, 3042.49 GFLOPS, 674.65 GOPS
print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms {device_str}, {loss_cpu:7.2f} loss, {opt_non_bias.lr.numpy()[0]:.6f} LR, {GlobalCounters.mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS, {GlobalCounters.global_ops*1e-9:9.2f} GOPS")
st = cl
i += 1
# verify eval acc
if target := getenv("TARGET_EVAL_ACC_PCT", 0.0):
if eval_acc_pct >= target:
print(colored(f"{eval_acc_pct=} >= {target}", "green"))
else:
raise ValueError(colored(f"{eval_acc_pct=} < {target}", "red"))
if __name__ == "__main__":
train_cifar()