forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt2.py
216 lines (179 loc) · 9.19 KB
/
gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python3
from typing import Optional, Union
import argparse
from tqdm import trange
import numpy as np
import tiktoken
from tinygrad import Tensor, TinyJit, Device, GlobalCounters, Variable
from tinygrad.helpers import Timing, DEBUG, getenv, fetch, colored
from tinygrad.nn import Embedding, Linear, LayerNorm
from tinygrad.nn.state import torch_load, load_state_dict, get_state_dict
MAX_CONTEXT = getenv("MAX_CONTEXT", 128)
HALF = getenv("HALF")
class Attention:
def __init__(self, dim, n_heads):
self.c_attn = Linear(dim, 3*dim, bias=True)
self.c_proj = Linear(dim, dim, bias=True)
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]) -> Tensor:
if mask is not None or start_pos.val == 0:
# no symbolic shape qkv when consuming prompts
start_pos = start_pos.val
if HALF: x = x.half()
xqkv = self.c_attn(x)
xq, xk, xv = [xqkv.shrink((None, None, (i*self.dim, (i+1)*self.dim))).reshape(None, None, self.n_heads, self.head_dim) for i in range(3)]
bsz, seqlen, _, _ = xq.shape
# create kv cache
if not hasattr(self, "cache_kv"):
self.cache_kv = Tensor.zeros(2, bsz, MAX_CONTEXT, self.n_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
# update the cache
self.cache_kv.shrink((None, None,(start_pos,start_pos+seqlen),None,None)).assign(Tensor.stack([xk, xv])).realize()
if start_pos > 0:
keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None))
values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None))
else:
keys = xk
values = xv
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
return self.c_proj(xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2).reshape(bsz, seqlen, self.dim))
class FeedForward:
def __init__(self, dim, hidden_dim):
self.c_fc = Linear(dim, hidden_dim, bias=True)
self.c_proj = Linear(hidden_dim, dim, bias=True)
def __call__(self, x:Tensor) -> Tensor:
return self.c_proj(self.c_fc(x).gelu())
class TransformerBlock:
def __init__(self, dim, n_heads, norm_eps):
self.attn = Attention(dim, n_heads)
self.mlp = FeedForward(dim, 4*dim)
self.ln_1 = LayerNorm(dim, norm_eps)
self.ln_2 = LayerNorm(dim, norm_eps)
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]):
h = x + self.attn(self.ln_1(x), start_pos, mask).float()
return (h + self.mlp(self.ln_2(h)))
class Transformer:
def __init__(self, dim, n_heads, n_layers, norm_eps, vocab_size, max_seq_len=1024):
self.vocab_size = vocab_size
self.wte = Embedding(vocab_size, dim)
self.wpe = Embedding(max_seq_len, dim)
self.h = [TransformerBlock(dim, n_heads, norm_eps) for _ in range(n_layers)]
self.ln_f = LayerNorm(dim, norm_eps)
self.lm_head = Linear(dim, vocab_size, bias=False)
self.forward_jit = TinyJit(self.forward)
def forward(self, tokens:Union[Tensor,Variable], start_pos:Variable, temperature:float=0.0):
if not hasattr(self, 'allpos'): self.allpos = Tensor.arange(0, MAX_CONTEXT).reshape(1, -1).realize()
if isinstance(tokens, Variable):
seqlen = 1
tok_emb = self.wte.weight.shrink(((tokens, tokens+1), None))
else:
seqlen = tokens.shape[1]
tok_emb = self.wte(tokens)
pos_emb = self.wpe(self.allpos.shrink((None, (start_pos, start_pos+seqlen))))
h = tok_emb + pos_emb
if HALF: h = h.half()
mask = Tensor.full((1, 1, seqlen, start_pos.val+seqlen), float("-inf"), dtype=h.dtype).triu(start_pos.val+1) if seqlen > 1 else None
for hi in self.h: h = hi(h, start_pos, mask)
logits = self.lm_head(self.ln_f(h))
if logits.shape[1] == 0:
# special case for empty prompt
logits = Tensor.ones((logits.shape[0], self.vocab_size), dtype=logits.dtype, device=logits.device)
else:
logits = logits[:, -1, :]
if temperature < 1e-6:
ret = logits.argmax(-1)
else:
ret = (logits / temperature).softmax().multinomial()
return ret.flatten().realize()
def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0) -> Tensor:
forward = (self.forward_jit if (isinstance(tokens, Variable) or tokens.shape[1] == 1) and getenv("JIT") else self.forward)
return forward(tokens, start_pos, temperature)
VOCAB_SIZE = 50257
MODEL_PARAMS = {
'gpt2': dict(n_layers=12, n_heads=12, dim=768, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 124M params
'gpt2-medium': dict(n_layers=24, n_heads=16, dim=1024, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 350M params
'gpt2-large': dict(n_layers=36, n_heads=20, dim=1280, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 774M params
'gpt2-xl': dict(n_layers=48, n_heads=25, dim=1600, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 1558M params
}
class GPT2:
@staticmethod
def build(model_size="gpt2"):
tokenizer = tiktoken.get_encoding("gpt2")
model = Transformer(**MODEL_PARAMS[model_size])
weights = torch_load(fetch(f'https://huggingface.co/{model_size}/resolve/main/pytorch_model.bin'))
# special treatment for the Conv1D weights we need to transpose
transposed = ('attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight')
for k in weights:
if k.endswith(transposed):
weights[k] = weights[k].T
# lm head and wte are tied
weights['lm_head.weight'] = weights['wte.weight']
load_state_dict(model, weights)
if HALF:
for l in get_state_dict(model).values():
l.replace(l.half().realize())
return GPT2(model, tokenizer)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def generate(self, prompt:str, max_length:int, temperature:float, timing:bool=False, batch_size:int=1):
prompt_tokens = self.tokenizer.encode(prompt, allowed_special={"<|endoftext|>"})
toks = [prompt_tokens[:] for _ in range(batch_size)]
start_pos = 0
for _ in trange(max_length, disable=(timing==True)):
GlobalCounters.reset()
if timing: print("")
st = GlobalCounters.time_sum_s
with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=timing):
if batch_size == 1 and len(toks[0][start_pos:]) == 1:
tokens = Variable("tokens", 0, VOCAB_SIZE).bind(toks[0][start_pos])
else:
tokens = Tensor([x[start_pos:] for x in toks])
tok = self.model(tokens, Variable("start_pos", 1 if start_pos else 0, MAX_CONTEXT).bind(start_pos), temperature).numpy().tolist()
start_pos = len(toks[0])
for i,t in enumerate(tok): toks[i].append(t)
return [self.tokenizer.decode(x) for x in toks]
# **** main code ****
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
default_prompt = "What is the answer to life, the universe, and everything?"
parser = argparse.ArgumentParser(description='Run GPT2 in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--prompt', type=str, default=default_prompt, help="Phrase to start with")
parser.add_argument('--count', type=int, default=100, help="Max number of tokens to generate")
parser.add_argument('--temperature', type=float, default=0.8, help="Temperature in the softmax")
parser.add_argument('--model_size', type=str, default="gpt2-medium", help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--seed', type=int, help="Set the random seed")
parser.add_argument('--batch_size', type=int, default=1, help="Set the input batch size")
parser.add_argument('--benchmark', type=int, default=-1, help="Benchmark GPT with the given number of tokens")
parser.add_argument('--noshow', action='store_true', help="Don't show the output")
args = parser.parse_args()
if args.seed is not None:
Tensor.manual_seed(args.seed)
np.random.seed(args.seed)
print(f"using {args.model_size}")
gpt2 = GPT2.build(args.model_size)
if args.benchmark != -1:
gpt2.model(Tensor.rand(args.batch_size, args.benchmark), Variable("a", 0, MAX_CONTEXT).bind(0)).realize()
else:
texts = gpt2.generate(args.prompt, args.count, args.temperature, timing=args.timing, batch_size=args.batch_size)
if not args.noshow:
print('Generating text...')
if len(texts) == 1: print(texts[0])
else:
for i,text in enumerate(texts): print(colored(f"Response {i}:", "green"), text)
# validate output!
if args.temperature == 0 and args.model_size == "gpt2-medium" and args.count == 10:
expected = {
default_prompt: "What is the answer to life, the universe, and everything?\n\nThe answer is that we are all one",
"Hello.": "Hello. I'm a little late to the party, but",
}
try:
assert texts[0] == expected[args.prompt]
print(colored("output validated", "green"))
except KeyError:
pass