-
Notifications
You must be signed in to change notification settings - Fork 602
Spark Usage
This page describes how to use the MongoDB Hadoop Connector with Spark.
- Obtain the MongoDB Hadoop Connector. You can either build it or download the jars. The releases page also includes instructions for use with Maven and Gradle. For Spark, all you need is the "core" jar.
- Get a JAR for the MongoDB Java Driver. The connector requires at least version 3.0.0 of the driver "uber" jar (called "mongo-java-driver.jar").
These are the only two depencies for building a project using Spark and MongoDB.
See example code in Java, Scala or Python.
These examples go through the basics of setting up your Spark project to use MongoDB as a source or a sink. At a high level, here's what we're going to do:
- Create a new
Configuration
so we can set options on the MongoDB Hadoop Connector. - Create a new
RDD
by calling thenewAPIHadoopRDD
method on aSparkContext
object, passing in theConfiguration
and theInputFormat
class we want to use, based on whether we want to read from a live cluster or a BSON snapshot. - When we're ready to save data back into MongoDB or a BSON file, we'll call
the
saveAsNewAPIHadoopFile
method on the RDD with theOutputFormat
class we want.
// Set configuration options for the MongoDB Hadoop Connector.
Configuration mongodbConfig = new Configuration();
// MongoInputFormat allows us to read from a live MongoDB instance.
// We could also use BSONFileInputFormat to read BSON snapshots.
mongodbConfig.set("mongo.job.input.format",
"com.mongodb.hadoop.MongoInputFormat");
// MongoDB connection string naming a collection to use.
// If using BSON, use "mapred.input.dir" to configure the directory
// where BSON files are located instead.
mongodbConfig.set("mongo.input.uri",
"mongodb://localhost:27017/db.collection");
// Create an RDD backed by the MongoDB collection.
JavaPairRDD<Object, BSONObject> documents = sc.newAPIHadoopRDD(
mongodbConfig, // Configuration
MongoInputFormat.class, // InputFormat: read from a live cluster.
Object.class, // Key class
BSONObject.class // Value class
);
// Create a separate Configuration for saving data back to MongoDB.
Configuration outputConfig = new Configuration();
outputConfig.set("mongo.output.uri",
"mongodb://localhost:27017/output.collection");
// Save this RDD as a Hadoop "file".
// The path argument is unused; all documents will go to 'mongo.output.uri'.
documents.saveAsNewAPIHadoopFile(
"file:///this-is-completely-unused",
Object.class,
BSONObject.class,
MongoOutputFormat.class,
outputConfig
);
// We can also save this back to a BSON file.
documents.saveAsNewAPIHadoopFile(
"hdfs://localhost:8020/user/spark/bson-demo",
Object.class,
BSONObject.class,
BSONFileOutputFormat.class,
new Configuration()
);
import org.apache.hadoop.conf.Configuration
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.rdd.RDD
import org.bson.BSONObject
import com.mongodb.hadoop.{
MongoInputFormat, MongoOutputFormat,
BSONFileInputFormat, BSONFileOutputFormat}
object SparkExample extends App {
// Set up the configuration for reading from MongoDB.
val mongoConfig = new Configuration()
// MongoInputFormat allows us to read from a live MongoDB instance.
// We could also use BSONFileInputFormat to read BSON snapshots.
// MongoDB connection string naming a collection to read.
// If using BSON, use "mapred.input.dir" to configure the directory
// where the BSON files are located instead.
mongoConfig.set("mongo.input.uri",
"mongodb://localhost:27017/db.collection")
val sparkConf = new SparkConf()
val sc = new SparkContext("local", "SparkExample", sparkConf)
// Create an RDD backed by the MongoDB collection.
val documents = sc.newAPIHadoopRDD(
mongoConfig, // Configuration
classOf[MongoInputFormat], // InputFormat
classOf[Object], // Key type
classOf[BSONObject]) // Value type
// Create a separate Configuration for saving data back to MongoDB.
val outputConfig = new Configuration()
outputConfig.set("mongo.output.uri",
"mongodb://localhost:27017/output.collection")
// Save this RDD as a Hadoop "file".
// The path argument is unused; all documents will go to "mongo.output.uri".
documents.saveAsNewAPIHadoopFile(
"file:///this-is-completely-unused",
classOf[Object],
classOf[BSONObject],
classOf[MongoOutputFormat[Object, BSONObject]],
outputConfig)
// We can also save this back to a BSON file.
val bsonOutputConfig = new Configuration()
documents.saveAsNewAPIHadoopFile(
"hdfs://localhost:8020/user/spark/bson-demo",
classOf[Object],
classOf[BSONObject],
classOf[BSONFileOutputFormat[Object, BSONObject]])
}
from pyspark import SparkContext, SparkConf
def main():
conf = SparkConf().setAppName("pyspark test")
sc = SparkContext(conf=conf)
# Create an RDD backed by the MongoDB collection.
# MongoInputFormat allows us to read from a live MongoDB instance.
# We could also use BSONFileInputFormat to read BSON snapshots.
rdd = sc.newAPIHadoopRDD(
inputFormatClass='com.mongodb.hadoop.MongoInputFormat',
keyClass='org.apache.hadoop.io.Text',
valueClass='org.apache.hadoop.io.MapWritable',
conf={
'mongo.input.uri': 'mongodb://localhost:27017/db.collection'
}
)
# Save this RDD as a Hadoop "file".
# The path argument is unused; all documents will go to "mongo.output.uri".
rdd.saveAsNewAPIHadoopFile(
path='file:///this-is-unused',
outputFormatClass='com.mongodb.hadoop.MongoOutputFormat',
keyClass='org.apache.hadoop.io.Text',
valueClass='org.apache.hadoop.io.MapWritable',
conf={
'mongo.output.uri': 'mongodb://localhost:27017/output.collection'
}
)
# We can also save this back to a BSON file.
rdd.saveAsNewAPIHadoopFile(
path='hdfs://localhost:8020/user/spark/bson-demo',
outputFormatClass='com.mongodb.hadoop.BSONFileOutputFormat',
keyClass='org.apache.hadoop.io.Text',
valueClass='org.apache.hadoop.io.MapWritable'
)
if __name__ == '__main__':
main()
mongo-hadoop now includes a Python package called pymongo-spark
(located only
on Github), which allows PySpark to interact with
PyMongo, the MongoDB Python driver. It
is highly recommended that you use this library when working with PySpark and
MongoDB.
This example gives a very basic demonstration of how to use the library. For other information, such as how to install pymongo-spark, please consult the README for the package.
from pyspark import SparkContext, SparkConf
import pymongo_spark
# Important: activate pymongo_spark.
pymongo_spark.activate()
def main():
conf = SparkConf().setAppName("pyspark test")
sc = SparkContext(conf=conf)
# Create an RDD backed by the MongoDB collection.
# This RDD *does not* contain key/value pairs, just documents.
# If you want key/value pairs, use the mongoPairRDD method instead.
rdd = sc.mongoRDD('mongodb://localhost:27017/db.collection')
# Save this RDD back to MongoDB as a different collection.
rdd.saveToMongoDB('mongodb://localhost:27017/db.other.collection')
# You can also read and write BSON:
bson_rdd = sc.BSONFileRDD('/path/to/file.bson')
bson_rdd.saveToBSON('/path/to/bson/output')
if __name__ == '__main__':
main()
Please find complete documentation in the README for pymongo-spark. Please not that this feature is currently only available in the "master" branch, and that this code is not released on the Central Repository or for direct download from the Github page.