forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask056_VerSe2019.py
274 lines (216 loc) · 11.4 KB
/
Task056_VerSe2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import SimpleITK as sitk
from multiprocessing.pool import Pool
from nnunet.configuration import default_num_threads
from nnunet.paths import nnUNet_raw_data
from batchgenerators.utilities.file_and_folder_operations import *
import shutil
from medpy import metric
import numpy as np
from nnunet.utilities.image_reorientation import reorient_all_images_in_folder_to_ras
def check_if_all_in_good_orientation(imagesTr_folder: str, labelsTr_folder: str, output_folder: str) -> None:
maybe_mkdir_p(output_folder)
filenames = subfiles(labelsTr_folder, suffix='.nii.gz', join=False)
import matplotlib.pyplot as plt
for n in filenames:
img = sitk.GetArrayFromImage(sitk.ReadImage(join(imagesTr_folder, n[:-7] + '_0000.nii.gz')))
lab = sitk.GetArrayFromImage(sitk.ReadImage(join(labelsTr_folder, n)))
assert np.all([i == j for i, j in zip(img.shape, lab.shape)])
z_slice = img.shape[0] // 2
img_slice = img[z_slice]
lab_slice = lab[z_slice]
lab_slice[lab_slice != 0] = 1
img_slice = img_slice - img_slice.min()
img_slice = img_slice / img_slice.max()
stacked = np.vstack((img_slice, lab_slice))
print(stacked.shape)
plt.imsave(join(output_folder, n[:-7] + '.png'), stacked, cmap='gray')
def evaluate_verse_case(sitk_file_ref:str, sitk_file_test:str):
"""
Only vertebra that are present in the reference will be evaluated
:param sitk_file_ref:
:param sitk_file_test:
:return:
"""
gt_npy = sitk.GetArrayFromImage(sitk.ReadImage(sitk_file_ref))
pred_npy = sitk.GetArrayFromImage(sitk.ReadImage(sitk_file_test))
dice_scores = []
for label in range(1, 26):
mask_gt = gt_npy == label
if np.sum(mask_gt) > 0:
mask_pred = pred_npy == label
dc = metric.dc(mask_pred, mask_gt)
else:
dc = np.nan
dice_scores.append(dc)
return dice_scores
def evaluate_verse_folder(folder_pred, folder_gt, out_json="/home/fabian/verse.json"):
p = Pool(default_num_threads)
files_gt_bare = subfiles(folder_gt, join=False)
assert all([isfile(join(folder_pred, i)) for i in files_gt_bare]), "some files are missing in the predicted folder"
files_pred = [join(folder_pred, i) for i in files_gt_bare]
files_gt = [join(folder_gt, i) for i in files_gt_bare]
results = p.starmap_async(evaluate_verse_case, zip(files_gt, files_pred))
results = results.get()
dct = {i: j for i, j in zip(files_gt_bare, results)}
results_stacked = np.vstack(results)
results_mean = np.nanmean(results_stacked, 0)
overall_mean = np.nanmean(results_mean)
save_json((dct, list(results_mean), overall_mean), out_json)
p.close()
p.join()
def print_unique_labels_and_their_volumes(image: str, print_only_if_vol_smaller_than: float = None):
img = sitk.ReadImage(image)
voxel_volume = np.prod(img.GetSpacing())
img_npy = sitk.GetArrayFromImage(img)
uniques = [i for i in np.unique(img_npy) if i != 0]
volumes = {i: np.sum(img_npy == i) * voxel_volume for i in uniques}
print('')
print(image.split('/')[-1])
print('uniques:', uniques)
for k in volumes.keys():
v = volumes[k]
if print_only_if_vol_smaller_than is not None and v > print_only_if_vol_smaller_than:
pass
else:
print('k:', k, '\tvol:', volumes[k])
def remove_label(label_file: str, remove_this: int, replace_with: int = 0):
img = sitk.ReadImage(label_file)
img_npy = sitk.GetArrayFromImage(img)
img_npy[img_npy == remove_this] = replace_with
img2 = sitk.GetImageFromArray(img_npy)
img2.CopyInformation(img)
sitk.WriteImage(img2, label_file)
if __name__ == "__main__":
### First we create a nnunet dataset from verse. After this the images will be all willy nilly in their
# orientation because that's how VerSe comes
base = '/media/fabian/DeepLearningData/VerSe2019'
base = "/home/fabian/data/VerSe2019"
# correct orientation
train_files_base = subfiles(join(base, "train"), join=False, suffix="_seg.nii.gz")
train_segs = [i[:-len("_seg.nii.gz")] + "_seg.nii.gz" for i in train_files_base]
train_data = [i[:-len("_seg.nii.gz")] + ".nii.gz" for i in train_files_base]
test_files_base = [i[:-len(".nii.gz")] for i in subfiles(join(base, "test"), join=False, suffix=".nii.gz")]
test_data = [i + ".nii.gz" for i in test_files_base]
task_id = 56
task_name = "VerSe"
foldername = "Task%03.0d_%s" % (task_id, task_name)
out_base = join(nnUNet_raw_data, foldername)
imagestr = join(out_base, "imagesTr")
imagests = join(out_base, "imagesTs")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
train_patient_names = [i[:-len("_seg.nii.gz")] for i in subfiles(join(base, "train"), join=False, suffix="_seg.nii.gz")]
for p in train_patient_names:
curr = join(base, "train")
label_file = join(curr, p + "_seg.nii.gz")
image_file = join(curr, p + ".nii.gz")
shutil.copy(image_file, join(imagestr, p + "_0000.nii.gz"))
shutil.copy(label_file, join(labelstr, p + ".nii.gz"))
test_patient_names = [i[:-7] for i in subfiles(join(base, "test"), join=False, suffix=".nii.gz")]
for p in test_patient_names:
curr = join(base, "test")
image_file = join(curr, p + ".nii.gz")
shutil.copy(image_file, join(imagests, p + "_0000.nii.gz"))
json_dict = OrderedDict()
json_dict['name'] = "VerSe2019"
json_dict['description'] = "VerSe2019"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see challenge website"
json_dict['licence'] = "see challenge website"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "CT",
}
json_dict['labels'] = {i: str(i) for i in range(26)}
json_dict['numTraining'] = len(train_patient_names)
json_dict['numTest'] = len(test_patient_names)
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1]} for i in
train_patient_names]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1] for i in test_patient_names]
save_json(json_dict, os.path.join(out_base, "dataset.json"))
# now we reorient all those images to ras. This saves a pkl with the original affine. We need this information to
# bring our predictions into the same geometry for submission
reorient_all_images_in_folder_to_ras(imagestr)
reorient_all_images_in_folder_to_ras(imagests)
reorient_all_images_in_folder_to_ras(labelstr)
# sanity check
check_if_all_in_good_orientation(imagestr, labelstr, join(out_base, 'sanitycheck'))
# looks good to me - proceed
# check the volumes of the vertebrae
_ = [print_unique_labels_and_their_volumes(i, 1000) for i in subfiles(labelstr, suffix='.nii.gz')]
# some cases appear fishy. For example, verse063.nii.gz has labels [1, 20, 21, 22, 23, 24] and 1 only has a volume
# of 63mm^3
#let's correct those
# 19 is connected to the image border and should not be segmented. Only one slice of 19 is segmented in the
# reference. Looks wrong
remove_label(join(labelstr, 'verse031.nii.gz'), 19, 0)
# spurious annotation of 18 (vol: 8.00)
remove_label(join(labelstr, 'verse060.nii.gz'), 18, 0)
# spurious annotation of 16 (vol: 3.00)
remove_label(join(labelstr, 'verse061.nii.gz'), 16, 0)
# spurious annotation of 1 (vol: 63.00) although the rest of the vertebra is [20, 21, 22, 23, 24]
remove_label(join(labelstr, 'verse063.nii.gz'), 1, 0)
# spurious annotation of 3 (vol: 9.53) although the rest of the vertebra is
# [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
remove_label(join(labelstr, 'verse074.nii.gz'), 3, 0)
# spurious annotation of 3 (vol: 15.00)
remove_label(join(labelstr, 'verse097.nii.gz'), 3, 0)
# spurious annotation of 3 (vol: 10) although the rest of the vertebra is
# [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
remove_label(join(labelstr, 'verse151.nii.gz'), 3, 0)
# spurious annotation of 25 (vol: 4) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
remove_label(join(labelstr, 'verse201.nii.gz'), 25, 0)
# spurious annotation of 23 (vol: 8) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8]
remove_label(join(labelstr, 'verse207.nii.gz'), 23, 0)
# spurious annotation of 23 (vol: 12) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
remove_label(join(labelstr, 'verse208.nii.gz'), 23, 0)
# spurious annotation of 23 (vol: 2) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
remove_label(join(labelstr, 'verse212.nii.gz'), 23, 0)
# spurious annotation of 20 (vol: 4) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
remove_label(join(labelstr, 'verse214.nii.gz'), 20, 0)
# spurious annotation of 23 (vol: 15) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8]
remove_label(join(labelstr, 'verse223.nii.gz'), 23, 0)
# spurious annotation of 23 (vol: 1) and 25 (vol: 7) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
remove_label(join(labelstr, 'verse226.nii.gz'), 23, 0)
remove_label(join(labelstr, 'verse226.nii.gz'), 25, 0)
# spurious annotation of 25 (vol: 27) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8]
remove_label(join(labelstr, 'verse227.nii.gz'), 25, 0)
# spurious annotation of 20 (vol: 24) although the rest of the vertebra is
# [1, 2, 3, 4, 5, 6, 7, 8]
remove_label(join(labelstr, 'verse232.nii.gz'), 20, 0)
# Now we are ready to run nnU-Net
"""# run this part of the code once training is done
folder_gt = "/media/fabian/My Book/MedicalDecathlon/nnUNet_raw_splitted/Task056_VerSe/labelsTr"
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_fullres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_fullres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_lowres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_lowres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_cascade_fullres/Task056_VerSe/nnUNetTrainerV2CascadeFullRes__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_cascade_fullres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)"""