-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhyperparam_search.py
executable file
·339 lines (271 loc) · 14.5 KB
/
hyperparam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
import argparse
import logging
import os
from glob import glob
from os.path import join, exists, isfile
import mlflow
import numpy as np
import torch
from orion.client import report_results
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import Compose
from dataset import PCXRayDataset, Normalize, ToTensor, RandomRotation, RandomTranslate, GaussianNoise, ToPILImage, \
split_dataset
from evaluate import ModelEvaluator, get_model_preds
from models import create_model
from train import create_opt_and_sched
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = logging.getLogger(__name__)
def train(data_dir, csv_path, splits_path, output_dir, target='pa', nb_epoch=100, learning_rate=(1e-4,), batch_size=1,
dropout=None, optim='adam', min_patients_per_label=50, seed=666, data_augmentation=True, model_type='hemis',
architecture='densenet121', misc=None):
assert target in ['pa', 'l', 'joint']
torch.manual_seed(seed)
np.random.seed(seed)
output_dir = output_dir.format(seed)
splits_path = splits_path.format(seed)
logger.info(f"Training mode: {target}")
if not exists(output_dir):
os.makedirs(output_dir)
if not exists(splits_path):
split_dataset(csv_path, splits_path, seed=seed)
# Find device
logger.info(f'Device that will be used is: {DEVICE}')
# Logging hparams
mlflow.log_param('model_type', model_type)
mlflow.log_param('architecture', architecture)
mlflow.log_param('target', target)
mlflow.log_param('seed', seed)
mlflow.log_param('optimizer', optim)
for i, lr in enumerate(learning_rate):
mlflow.log_param(f'learning_rate_{i}', lr)
mlflow.log_param('gamma', misc.gamma)
mlflow.log_param('reduce_period', misc.reduce_period)
mlflow.log_param('dropout', dropout)
mlflow.log_param('max_label_weight', misc.max_label_weight)
if model_type == 'hemis':
mlflow.log_param('drop-view-prob', misc.drop_view_prob)
if model_type == 'multitask':
mlflow.log_param('mt-task-prob', misc.mt_task_prob)
mlflow.log_param('mt-join', misc.join)
# Load data
val_transfo = [Normalize(), ToTensor()]
if data_augmentation:
train_transfo = [Normalize(), ToPILImage()]
if 'rotation' in misc.transforms:
train_transfo.append(RandomRotation(degrees=misc.rotation_degrees))
if 'translation' in misc.transforms:
train_transfo.append(RandomTranslate(translate=misc.translate))
train_transfo.append(ToTensor())
if 'noise' in misc.transforms:
train_transfo.append(GaussianNoise())
else:
train_transfo = val_transfo
dset_args = {'datadir': data_dir, 'csvpath': csv_path, 'splitpath': splits_path,
'max_label_weight': misc.max_label_weight, 'min_patients_per_label': min_patients_per_label,
'flat_dir': misc.flatdir}
loader_args = {'batch_size': batch_size, 'shuffle': True, 'num_workers': misc.threads, 'pin_memory': True}
trainset = PCXRayDataset(transform=Compose(train_transfo), **dset_args)
valset = PCXRayDataset(transform=Compose(val_transfo), dataset='val', **dset_args)
trainloader = DataLoader(trainset, **loader_args)
valloader = DataLoader(valset, **loader_args)
logger.info("Number of patients: {} train, {} valid.".format(len(trainset), len(valset)))
logger.info("Predicting {} labels: {}".format(len(trainset.labels), trainset.labels))
logger.info(trainset.labels_weights)
# Load model
model = create_model(model_type, num_classes=trainset.nb_labels, target=target,
architecture=architecture, dropout=dropout, otherargs=misc)
model.to(DEVICE)
logger.info(f'Created {model_type} model')
evaluator = ModelEvaluator(output_dir=output_dir, target=target, logger=logger)
criterion = nn.BCEWithLogitsLoss(pos_weight=trainset.labels_weights.to(DEVICE))
loss_weights = [1.0] + misc.loss_weights
task_prob = [1 - misc.mt_task_prob, misc.mt_task_prob / 2., misc.mt_task_prob / 2.]
if model_type in ['singletask', 'multitask', 'dualnet'] and len(learning_rate) > 1:
# each branch has custom learning rate
optim_params = [{'params': model.frontal_model.parameters(), 'lr': learning_rate[0]},
{'params': model.lateral_model.parameters(), 'lr': learning_rate[1]},
{'params': model.classifier.parameters(), 'lr': learning_rate[2]}]
else:
# one lr for all
optim_params = [{'params': model.parameters(), 'lr': learning_rate[0]}]
if misc.learn_loss_coeffs:
temperature = torch.ones(size=(3,), requires_grad=True, device=DEVICE).float()
temperature_lr = learning_rate[-1] if len(learning_rate) > 3 else learning_rate[0]
optim_params.append({'params': temperature, 'lr': temperature_lr})
# Optimizer
optimizer, scheduler = create_opt_and_sched(optim=optim, params=optim_params, lr=learning_rate[0], other_args=misc)
start_epoch = 1
# Resume training if possible
latest_ckpt_file = join(output_dir, f'{target}-latest.tar')
if isfile(latest_ckpt_file):
checkpoint = torch.load(latest_ckpt_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
del checkpoint
evaluator.load_saved()
start_epoch = int(evaluator.eval_df.epoch.iloc[-1])
logger.info(f"Resumed at epoch {start_epoch}")
# Training loop
for epoch in range(start_epoch, nb_epoch + 1):
model.train()
running_loss = torch.zeros(1, requires_grad=False, dtype=torch.float).to(DEVICE)
train_preds, train_true = [], []
for i, data in enumerate(trainloader, 0):
if target == 'joint':
*images, label = data['PA'].to(DEVICE), data['L'].to(DEVICE), data['encoded_labels'].to(DEVICE)
if model_type == 'stacked':
images = torch.cat(images, dim=1)
else:
images, label = data[target.upper()].to(DEVICE), data['encoded_labels'].to(DEVICE)
# Forward
output = model(images)
optimizer.zero_grad()
if model_type == 'multitask':
# order of returned logits is joint, frontal, lateral
if misc.learn_loss_coeffs:
loss_weights = temperature.pow(-2)
all_task_losses, weighted_task_losses = [], []
for idx, _logit in enumerate(output):
task_loss = criterion(_logit, label)
all_task_losses.append(task_loss)
weighted_task_losses.append(task_loss * loss_weights[idx])
losses_dict = {0: sum(weighted_task_losses), 1: all_task_losses[1], 2: all_task_losses[2]}
select = np.random.choice([0, 1, 2], p=task_prob)
loss = losses_dict[select]
if misc.learn_loss_coeffs:
loss += temperature.log().sum()
output = output[0]
else:
loss = criterion(output, label)
# Backward
loss.backward()
optimizer.step()
# Save predictions
train_preds.append(torch.sigmoid(output).detach().cpu().numpy())
train_true.append(label.detach().cpu().numpy())
# print statistics
running_loss += loss.detach()
print_every = max(1, len(trainset) // (20 * batch_size))
if (i + 1) % print_every == 0:
running_loss = running_loss.cpu().detach().numpy().squeeze() / print_every
logger.info(f'[{epoch}, {i + 1:5}] loss: {running_loss:.5f}')
evaluator.store_dict['train_loss'].append(running_loss)
running_loss = torch.zeros(1, requires_grad=False).to(DEVICE)
del output, images, data
train_preds = np.vstack(train_preds)
train_true = np.vstack(train_true)
model.eval()
val_true, val_preds, val_runloss = get_model_preds(model, dataloader=valloader, loss_fn=criterion,
target=target, model_type=model_type,
vote_at_test=misc.vote_at_test)
val_runloss /= (len(valset) / batch_size)
logger.info(f'Epoch {epoch} - Val loss = {val_runloss:.5f}')
val_auc, _ = evaluator.evaluate_and_save(val_true, val_preds, epoch=epoch,
train_true=train_true, train_preds=train_preds,
runloss=val_runloss)
if 'reduce' in misc.sched:
scheduler.step(metrics=val_auc, epoch=epoch)
else:
scheduler.step(epoch=epoch)
_states = {'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()}
torch.save(_states, latest_ckpt_file)
torch.save(model.state_dict(), join(output_dir, f'{target}-e{epoch}.pt'))
# Remove all batches weights
weights_files = glob(join(output_dir, f'{target}-e{epoch}-i*.pt'))
for file in weights_files:
os.remove(file)
logger.info(evaluator.eval_df.auc.iloc[-1])
return - evaluator.eval_df.auc.iloc[-1]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Usage')
# Paths
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--csv_path', type=str, required=True)
parser.add_argument('--splits_path', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True)
parser.add_argument('--log', type=str, default=None)
parser.add_argument('--exp_name', type=str, default=None)
# Model params
parser.add_argument('--arch', type=str, default='densenet121')
parser.add_argument('--model-type', type=str, default='hemis',
help="Which joint model to pick: must be one of "
"['multitask', 'dualnet', 'stacked', 'hemis', 'concat']")
parser.add_argument('--vote-at-test', action='store_true')
# Hyperparams
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--learning_rate', type=str, default=[0.0001])
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--optim', type=str, default='adam')
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--sched', default='steplr')
parser.add_argument('--reduce_period', type=int, default=20)
# Dataset params
parser.add_argument('--target', type=str, default='pa')
parser.add_argument('--min_patients', type=int, default=50)
parser.add_argument('--seed', type=int, default=666)
parser.add_argument('--threads', type=int, default=1)
parser.add_argument('--max_label_weight', default=5.0, type=float)
# Data augmentation options
parser.add_argument('--data-augmentation', type=bool, default=True)
parser.add_argument('--transforms', default=['rotation', 'translation', 'noise'], nargs='*')
parser.add_argument('--rotation-degrees', type=int, default=5)
parser.add_argument('--translate', type=float, default=None, nargs=2,
help="tuple of 2 fractions for width and height")
# Other optional arguments
parser.add_argument('--merge', type=int, default=3,
help='For Hemis and HemisConcat. Merge modalities after N blocks')
parser.add_argument('--drop-view-prob', type=float, default=0.0,
help='For joint. Drop either view with p/2 and keep both views with 1-p')
parser.add_argument('--mt-task-prob', type=float, default=0.0,
help='Curriculum learning probs. Drop either task with p/2 and keep both views with 1-p')
parser.add_argument('--mt-combine-at', dest='combine', type=str, default='prepool',
help='For Multitask. Combine both views before or after pooling')
parser.add_argument('--mt-join', dest='join', type=str, default='concat',
help='For Multitask. Combine views how? Valid options - concat, max, mean')
parser.add_argument('--learn-loss-coeffs', action='store_true', help='Learn the loss weights')
parser.add_argument('--loss-weights', type=float, default=[0.3, 0.3], nargs=2,
help='For Multitask. Loss weights for regularizing loss. 1st is for PA, 2nd for L')
parser.add_argument('--nesterov', action='store_true')
parser.add_argument('--momentum', default=0.0, type=float)
parser.add_argument('--weight_decay', default=1e-5, type=float)
parser.add_argument('--flatdir', action='store_false')
args = parser.parse_args()
np.set_printoptions(suppress=True, precision=4)
if args.exp_name:
args.output_dir = args.output_dir + "-" + args.exp_name
if args.dropout >= 1:
args.dropout /= 10.
if args.data_dir == "CLUSTER":
args.data_dir = os.environ.get('DATADIR')
if args.target != 'joint':
mlflow_name = args.target
exp_name = args.arch
else:
mlflow_name = args.model_type
exp_name = args.model_type
mlflow.set_experiment(f'lateral-view-{mlflow_name}')
mlflow.start_run(run_name=f'{exp_name}-run{args.exp_name}')
logging.basicConfig(level=logging.INFO)
# will log to a file if provided
if args.log is not None:
handler = logging.handlers.WatchedFileHandler(args.log)
formatter = logging.Formatter(logging.BASIC_FORMAT)
handler.setFormatter(formatter)
root = logging.getLogger()
root.setLevel(logging.INFO)
root.addHandler(handler)
args.learning_rate = [float(lr) for lr in eval(args.learning_rate)]
logger.info(args)
val_loss = train(args.data_dir, args.csv_path, args.splits_path, args.output_dir, target=args.target,
nb_epoch=args.epochs, learning_rate=args.learning_rate, batch_size=args.batch_size,
dropout=args.dropout, optim=args.optim, min_patients_per_label=args.min_patients, seed=args.seed,
model_type=args.model_type, architecture=args.arch, data_augmentation=args.data_augmentation,
misc=args)
report_results([dict(name='val_auc', type='objective', value=val_loss)])