forked from ultralytics/yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
150 lines (121 loc) · 6.13 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
from sys import platform
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
def detect(save_txt=False, save_img=False):
img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half, view_img = opt.output, opt.source, opt.weights, opt.half, opt.view_img
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Initialize model
model = Darknet(opt.cfg, img_size)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Eval mode
model.to(device).eval()
# Export mode
if ONNX_EXPORT:
img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192)
torch.onnx.export(model, img, 'weights/export.onnx', verbose=True)
return
# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=img_size, half=half)
else:
save_img = True
dataset = LoadImages(source, img_size=img_size, half=half)
# Get classes and colors
classes = load_classes(parse_data_cfg(opt.data)['names'])
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
# Run inference
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
t = time.time()
# Get detections
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred, _ = model(img)
if opt.half:
pred = pred.float()
for i, det in enumerate(non_max_suppression(pred, opt.conf_thres, opt.nms_thres)): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, classes[int(c)]) # add to string
# Write results
for *xyxy, conf, _, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
print('%sDone. (%.3fs)' % (s, time.time() - t))
# Stream results
if view_img:
cv2.imshow(p, im0)
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + out + ' ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
detect()