If the same lab notebook is run a second time, experitur
skips existing trials by default.
P_to_run, P_existing
- Skip existing
Sametrial_id
? Not sufficient if parameters are added or deleted during trialsparameters == parameter_pre
? Not sufficient alone, if default parameters change between runs or the value of a parameter deviates in a second run. Might skip too many.parameters subseteq parameter_post
? Not sufficient alone, if default parameters change between runs. -> We can't track changes of default parameters without actually running the trial. -> Able to detect deviation from default parameters. (subseteq
=:= P_to_run.keys() is a nonempty subset of P_to_run.keys() and the values for each matching key are the same)parameters == parameter_post
? Wrong, because default parameters are added. Might skip none at all.
- Trial ID already taken? Include existing trial in calculation of varying parameters.
- Redo existing.
- All
- Failed (
success is False
or trial directory is empty) - [Experiment]
- Retrieve trial data by id (
'<experiment>/<trial>'
) - Generate trial id given parameter set (experiment, parameters)
- Retrieve trial data by parameter set