-
Notifications
You must be signed in to change notification settings - Fork 23
/
solid_dynamics.c
414 lines (413 loc) · 18.4 KB
/
solid_dynamics.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/****************************************************************************
* ArtraCFD *
* <By Huangrui Mo> *
* Copyright (C) Huangrui Mo <[email protected]> *
* This file is part of ArtraCFD. *
* ArtraCFD is free software: you can redistribute it and/or modify it *
* under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
****************************************************************************/
/****************************************************************************
* Required Header Files
****************************************************************************/
#include "solid_dynamics.h"
#include <stdlib.h> /* mathematical functions on integers */
#include <math.h> /* common mathematical functions */
#include <limits.h> /* sizes of integral types */
#include <float.h> /* size of floating point values */
#include <string.h> /* manipulating strings */
#include "immersed_boundary.h"
#include "computational_geometry.h"
#include "linear_system.h"
#include "cfd_commons.h"
#include "commons.h"
/****************************************************************************
* Static Function Declarations
****************************************************************************/
static void ApplyKinematics(const Real, const Real, Space *);
static void ApplyCollision(Space *);
static void DetectColState(const int, const int, const int, const int, const int,
const int [restrict][DIMS], const Node *const, const Partition *const,
Geometry *const);
static void AddColObject(const int [restrict], const int, Geometry *const);
static void ApplyMotion(const Real, Space *);
/****************************************************************************
* Function definitions
****************************************************************************/
void EvolveSolidDynamics(const Real now, const Real dt, Space *space, const Model *model)
{
IntegrateSurfaceForce(space, model);
ApplyKinematics(now, dt, space);
if (1 != model->psi) {
ApplyCollision(space);
}
ApplyMotion(dt, space);
ComputeGeometricField(space, model);
TreatImmersedBoundary(TO, space, model);
return;
}
void IntegrateSurfaceForce(Space *space, const Model *model)
{
const Partition *const part = &(space->part);
const Node *const node = space->node;
Geometry *const geo = &(space->geo);
const IntVec nMin = {part->ns[PIN][X][MIN], part->ns[PIN][Y][MIN], part->ns[PIN][Z][MIN]};
const IntVec nMax = {part->ns[PIN][X][MAX], part->ns[PIN][Y][MAX], part->ns[PIN][Z][MAX]};
const RealVec sMin = {part->domain[X][MIN], part->domain[Y][MIN], part->domain[Z][MIN]};
const RealVec d = {part->d[X], part->d[Y], part->d[Z]};
const RealVec dd = {part->dd[X], part->dd[Y], part->dd[Z]};
const IntVec ng = {part->ng[X], part->ng[Y], part->ng[Z]};
const Real zero = 0.0;
const Real percent = FLT_EPSILON * FLT_EPSILON;
Polyhedron *poly = NULL;
int idx = 0; /* linear array index math variable */
int box[DIMS][LIMIT] = {{0}}; /* bounding box in node space */
int lidN = 0; /* count total number of interfacial nodes */
int gstN = 0; /* count total number of ghost nodes */
RealVec pG = {zero}; /* ghost point */
RealVec pO = {zero}; /* boundary point */
RealVec pI = {zero}; /* image point */
RealVec N = {zero}; /* normal */
Real Uo[DIMUo] = {zero};
RealVec V = {zero}; /* velocity vector */
RealVec r = {zero}; /* position vector */
RealVec Fp = {zero}; /* pressure force */
RealVec Fv = {zero}; /* viscous force */
RealVec Fs = {zero}; /* surface force */
RealVec Tt = {zero}; /* torque */
RealVec fvar = {zero}; /* force offset, mean, variance */
Real Vn = zero; /* velocity projection */
Real mu = zero; /* viscosity */
Real ds = zero; /* infinitesimal area for integration */
for (int n = 0; n < geo->totN; ++n) {
poly = geo->poly + n;
if (0 < poly->state) { /* surface force negligible */
continue;
}
/* reset some non accumulative information to zero */
memset(poly->Fp, 0, DIMS * sizeof(*poly->Fp));
memset(poly->Fv, 0, DIMS * sizeof(*poly->Fv));
memset(poly->Tt, 0, DIMS * sizeof(*poly->Tt));
memset(fvar, 0, DIMS * sizeof(*fvar));
lidN = 0;
gstN = 0;
/* determine search range according to bounding box of polyhedron and valid node space */
for (int s = 0; s < DIMS; ++s) {
box[s][MIN] = ConfineSpace(MapNode(poly->box[s][MIN], sMin[s], dd[s], ng[s]), nMin[s], nMax[s]);
box[s][MAX] = ConfineSpace(MapNode(poly->box[s][MAX], sMin[s], dd[s], ng[s]), nMin[s], nMax[s]) + 1;
}
for (int k = box[Z][MIN]; k < box[Z][MAX]; ++k) {
for (int j = box[Y][MIN]; j < box[Y][MAX]; ++j) {
for (int i = box[X][MIN]; i < box[X][MAX]; ++i) {
idx = IndexNode(k, j, i, part->n[Y], part->n[X]);
if ((2 == node[idx].lid) && (n + 1 == node[idx].did)) {
++lidN; /* an interfacial node of current geometry */
}
if ((2 != node[idx].gst) || (n + 1 != node[idx].did)) {
continue;
}
++gstN; /* a ghost node of current geometry */
/* surface force exerted by fluid (pressure + shear force) */
pG[X] = MapPoint(i, sMin[X], d[X], ng[X]);
pG[Y] = MapPoint(j, sMin[Y], d[Y], ng[Y]);
pG[Z] = MapPoint(k, sMin[Z], d[Z], ng[Z]);
ComputeGeometricData(pG, node[idx].fid, poly, pO, pI, N);
r[X] = pO[X] - poly->O[X];
r[Y] = pO[Y] - poly->O[Y];
r[Z] = pO[Z] - poly->O[Z];
MapPrimitive(model->gamma, model->gasR, node[idx].U[TO], Uo);
Fp[X] = Uo[4] * N[X];
Fp[Y] = Uo[4] * N[Y];
Fp[Z] = Uo[4] * N[Z];
if (1 == gstN) {
fvar[0] = Uo[4];
}
fvar[1] = fvar[1] + Uo[4] - fvar[0];
fvar[2] = fvar[2] + (Uo[4] - fvar[0]) * (Uo[4] - fvar[0]);
if ((zero < model->refMu) && (zero < poly->cf)) {
mu = model->refMu * Viscosity(Uo[5] * model->refT);
Cross(poly->W[TO], r, V);
V[X] = Uo[1] - (poly->V[TO][X] + V[X]);
V[Y] = Uo[2] - (poly->V[TO][Y] + V[Y]);
V[Z] = Uo[3] - (poly->V[TO][Z] + V[Z]);
Vn = Dot(V, N);
Fv[X] = mu * (V[X] - Vn * N[X]) / Dist(pG, pO);
Fv[Y] = mu * (V[Y] - Vn * N[Y]) / Dist(pG, pO);
Fv[Z] = mu * (V[Z] - Vn * N[Z]) / Dist(pG, pO);
} else {
memset(Fv, 0, DIMS * sizeof(*Fv));
}
Fs[X] = Fp[X] + Fv[X];
Fs[Y] = Fp[Y] + Fv[Y];
Fs[Z] = Fp[Z] + Fv[Z];
Cross(r, Fs, Tt);
/* integration sum */
for (int s = 0; s < DIMS; ++s) {
poly->Fp[s] = poly->Fp[s] + Fp[s];
poly->Fv[s] = poly->Fv[s] + Fv[s];
poly->Tt[s] = poly->Tt[s] + Tt[s];
}
}
}
}
/* calibrate the sum of discrete forces into integration */
if ((0 == lidN) || (0 == gstN)) { /* no surface force exerted */
continue;
}
ds = poly->area / lidN;
fvar[2] = (fvar[2] - fvar[1] * fvar[1] / gstN) / gstN; /* variance */
fvar[1] = fvar[1] / gstN + fvar[0]; /* mean */
if (percent * fvar[1] * fvar[1] > fvar[2]) { /* recover equilibrium state and ignore integration error */
ds = zero;
}
for (int s = 0; s < DIMS; ++s) {
poly->Fp[s] = -poly->Fp[s] * ds;
poly->Fv[s] = -poly->Fv[s] * ds;
poly->Tt[s] = -poly->Tt[s] * ds;
}
}
return;
}
static void ApplyKinematics(const Real now, const Real dt, Space *space)
{
Geometry *const geo = &(space->geo);
Polyhedron *poly = NULL;
Real A[DIMS][DIMS] = {{0.0}};
Real B[DIMS][1] = {{0.0}};
for (int n = 0; n < geo->totN; ++n) {
poly = geo->poly + n;
if (1 == poly->state) { /* stationary object */
continue;
}
if (now > poly->to) { /* end power supply */
memset(poly->at[TN], 0, DIMS * sizeof(*poly->at[TN]));
memset(poly->ar[TN], 0, DIMS * sizeof(*poly->ar[TN]));
poly->to = FLT_MAX; /* avoid repeating */
}
/* translation and rotational acceleration */
for (int s = 0; s < DIMS; ++s) {
for (int m = 0; m < DIMS; ++m) {
A[s][m] = poly->I[s][m];
}
B[s][0] = poly->Tt[s] / poly->rho;
}
SolveLinearSystem(DIMS, A, 1, B, B);
for (int s = 0; s < DIMS; ++s) {
/* acceleration from surface force and body force */
poly->at[TO][s] = (poly->Fp[s] + poly->Fv[s]) / (poly->rho * poly->volume) + poly->at[TN][s] + poly->g[s];
poly->ar[TO][s] = B[s][0] + poly->ar[TN][s];
}
/* velocity integration */
for (int s = 0; s < DIMS; ++s) {
/* averaged velocity during time level n and n+1 */
poly->V[TN][s] = 0.5 * (poly->V[TO][s] + poly->V[TO][s] + poly->at[TO][s] * dt);
poly->W[TN][s] = 0.5 * (poly->W[TO][s] + poly->W[TO][s] + poly->ar[TO][s] * dt);
/* velocity at the next time level */
poly->V[TO][s] = poly->V[TO][s] + poly->at[TO][s] * dt;
poly->W[TO][s] = poly->W[TO][s] + poly->ar[TO][s] * dt;
}
}
return;
}
static void ApplyCollision(Space *space)
{
const Partition *const part = &(space->part);
const Node *const node = space->node;
Geometry *const geo = &(space->geo);
const IntVec nMin = {part->ns[PIN][X][MIN], part->ns[PIN][Y][MIN], part->ns[PIN][Z][MIN]};
const IntVec nMax = {part->ns[PIN][X][MAX], part->ns[PIN][Y][MAX], part->ns[PIN][Z][MAX]};
const RealVec sMin = {part->domain[X][MIN], part->domain[Y][MIN], part->domain[Z][MIN]};
const RealVec dd = {part->dd[X], part->dd[Y], part->dd[Z]};
const IntVec ng = {part->ng[X], part->ng[Y], part->ng[Z]};
const Real zero = 0.0;
const Real one = 1.0;
const int coltag = INT_MAX / 2; /* colliding polyhedron marker */
const Real crList[5] = {0.0, 0.25, 0.5, 0.75, 1.0}; /* coefficient of restitution */
Polyhedron *polp = NULL;
Polyhedron *poln = NULL;
Collision *col = NULL;
int idx = 0; /* linear array index math variable */
int box[DIMS][LIMIT] = {{0}}; /* bounding box in node space */
RealVec Vo = {zero}; /* original translational velocity */
RealVec Wo = {zero}; /* original rotational velocity */
RealVec V = {zero}; /* relative translational velocity */
RealVec W = {zero}; /* relative rotational velocity */
RealVec N = {zero}; /* line of impact */
Real Vn = zero; /* translational velocity projection on line of impact */
Real cr = zero; /* coefficient of restitution */
Real cf = zero; /* coefficient of sliding friction */
Real mp = zero; /* mass */
Real mn = zero; /* mass */
Real meff = zero; /* effective mass */
for (int p = 0; p < geo->totN; ++p) {
polp = geo->poly + p;
if (1 == polp->state) { /* stationary object */
continue;
}
geo->colN = 0; /* reset */
/* determine search range according to bounding box of polyhedron and valid node space */
for (int s = 0; s < DIMS; ++s) {
box[s][MIN] = ConfineSpace(MapNode(polp->box[s][MIN], sMin[s], dd[s], ng[s]), nMin[s], nMax[s]);
box[s][MAX] = ConfineSpace(MapNode(polp->box[s][MAX], sMin[s], dd[s], ng[s]), nMin[s], nMax[s]) + 1;
}
for (int k = box[Z][MIN]; k < box[Z][MAX]; ++k) {
for (int j = box[Y][MIN]; j < box[Y][MAX]; ++j) {
for (int i = box[X][MIN]; i < box[X][MAX]; ++i) {
idx = IndexNode(k, j, i, part->n[Y], part->n[X]);
if ((1 != node[idx].lid) || (p + 1 != node[idx].did)) {
continue;
}
DetectColState(k, j, i, p + 1, part->pathSep[1], part->path, node, part, geo);
}
}
}
/* skip none contacting polyhedron */
if (0 == geo->colN) {
continue;
}
/* backup original velocity */
memcpy(Vo, polp->V[TO], DIMS * sizeof(*polp->V[TO]));
memcpy(Wo, polp->W[TO], DIMS * sizeof(*polp->W[TO]));
/* initialize post-collision velocity */
memcpy(polp->V[TO], polp->V[TN], DIMS * sizeof(*polp->V[TO]));
memcpy(polp->W[TO], polp->W[TN], DIMS * sizeof(*polp->W[TO]));
/* pairwise collision */
mp = polp->rho * polp->volume;
for (int n = 0; n < geo->colN; ++n) {
col = geo->col + n;
/* line of impact */
if (0 == abs(col->N[X]) + abs(col->N[Y]) + abs(col->N[Z])) {
if ((geo->colN - 1 == n) && (coltag > polp->state)) {
/* recover contacting but none colliding polyhedron */
memcpy(polp->V[TO], Vo, DIMS * sizeof(*polp->V[TO]));
memcpy(polp->W[TO], Wo, DIMS * sizeof(*polp->W[TO]));
}
continue;
}
N[X] = col->N[X];
N[Y] = col->N[Y];
N[Z] = col->N[Z];
Normalize(DIMS, Norm(N), N);
poln = geo->poly + col->gid - 1;
/* relative speed */
for (int s = 0; s < DIMS; ++s) {
V[s] = polp->V[TN][s] - poln->V[TN][s];
W[s] = polp->W[TN][s] - poln->W[TN][s];
}
Vn = Dot(V, N);
if (zero >= Vn) {
if ((geo->colN - 1 == n) && (coltag > polp->state)) {
/* recover contacting but none colliding polyhedron */
memcpy(polp->V[TO], Vo, DIMS * sizeof(*polp->V[TO]));
memcpy(polp->W[TO], Wo, DIMS * sizeof(*polp->W[TO]));
}
continue;
}
/* mark colliding polyhedron */
if (coltag > polp->state) {
polp->state = polp->state + coltag;
}
mn = poln->rho * poln->volume;
meff = mn / (mp + mn);
cr = 0.5 * (crList[polp->mid] + crList[poln->mid]);
cf = 0.5 * (polp->cf + poln->cf);
/* vector summation of the velocity changes in the global frame */
for (int s = 0; s < DIMS; ++s) {
polp->V[TO][s] = polp->V[TO][s] - meff * (one + cr) * Vn * N[s] - cf * (V[s] - Vn * N[s]);
polp->W[TO][s] = polp->W[TO][s] - meff * W[s];
}
}
}
/* update post-collision velocity for collided polyhedron */
for (int p = 0; p < geo->totN; ++p) {
polp = geo->poly + p;
if (coltag > polp->state) { /* none collided polyhedron */
continue;
}
polp->state = polp->state - coltag; /* recover state */
memcpy(polp->V[TN], polp->V[TO], DIMS * sizeof(*polp->V[TO]));
memcpy(polp->W[TN], polp->W[TO], DIMS * sizeof(*polp->W[TO]));
}
return;
}
static void DetectColState(const int k, const int j, const int i, const int did,
const int end, const int path[restrict][DIMS], const Node *const node,
const Partition *const part, Geometry *const geo)
{
/* search around the specified node to find colliding objects */
int idx = 0; /* linear array index math variable */
int ih = 0, jh = 0, kh = 0; /* neighbouring node */
for (int n = 0; n < end; ++n) {
kh = k + path[n][Z];
jh = j + path[n][Y];
ih = i + path[n][X];
if (!InPartBox(kh, jh, ih, part->ns[PIN])) {
continue;
}
idx = IndexNode(kh, jh, ih, part->n[Y], part->n[X]);
if (0 == node[idx].did) { /* a fluid node is not valid */
continue;
}
if (did != node[idx].did) { /* a heterogeneous node on the path */
AddColObject(path[n], node[idx].did, geo);
}
}
return;
}
static void AddColObject(const int N[restrict], const int did, Geometry *const geo)
{
Collision *col = NULL;
/* search the object list, if already exist, adjust the line of impact */
for (int n = 0; n < geo->colN; ++n) {
col = geo->col + n;
if (did == col->gid) {
col->N[X] = col->N[X] + N[X];
col->N[Y] = col->N[Y] + N[Y];
col->N[Z] = col->N[Z] + N[Z];
return;
}
}
/* otherwise, add to the collision list */
col = geo->col + geo->colN;
col->gid = did;
col->N[X] = N[X];
col->N[Y] = N[Y];
col->N[Z] = N[Z];
++(geo->colN);
return;
}
static void ApplyMotion(const Real dt, Space *space)
{
Geometry *const geo = &(space->geo);
Polyhedron *poly = NULL;
RealVec offset = {0.0}; /* translation */
RealVec angle = {0.0}; /* rotation */
const RealVec scale = {1.0, 1.0, 1.0}; /* scale */
for (int n = 0; n < geo->totN; ++n) {
poly = geo->poly + n;
if (1 == poly->state) { /* stationary object */
continue;
}
/* position integration */
for (int s = 0; s < DIMS; ++s) {
offset[s] = poly->V[TN][s] * dt;
angle[s] = poly->W[TN][s] * dt;
}
/* transform geometry */
if (0 >= poly->faceN) { /* analytical polyhedron */
poly->O[X] = poly->O[X] + offset[X];
poly->O[Y] = poly->O[Y] + offset[Y];
poly->O[Z] = poly->O[Z] + offset[Z];
/* bounding box */
for (int s = 0; s < DIMS; ++s) {
poly->box[s][MIN] = poly->O[s] - poly->r;
poly->box[s][MAX] = poly->O[s] + poly->r;
}
} else { /* triangulated polyhedron */
TransformPolyhedron(poly->O, scale, angle, offset, poly);
}
}
return;
}
/* a good practice: end file with a newline */