forked from NSLS-II/sirepo-bluesky-legacy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_optimization.py
373 lines (323 loc) · 14.3 KB
/
run_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from re_config import *
import numpy as np
from random import random, uniform
from multiprocessing import Process
import hashlib
from sirepo_bluesky import SirepoBluesky
import sirepo_detector as sd
# multiprocessing
def run_sim(sim):
print('Running simulation {}'.format(sim.sim_id))
sim.run_simulation()
# def main():
def ensure_bounds(vec, bounds):
# Makes sure each individual stays within bounds and adjusts them if they aren't
vec_new = []
# cycle through each variable in vector
for i in range(len(vec)):
# variable exceeds the minimum boundary
if vec[i] < bounds[i][0]:
vec_new.append(bounds[i][0])
# variable exceeds the maximum boundary
if vec[i] > bounds[i][1]:
vec_new.append(bounds[i][1])
# the variable is fine
if bounds[i][0] <= vec[i] <= bounds[i][1]:
vec_new.append(vec[i])
return vec_new
def omea(positions, fields, grazing_params, grazing_index, autocompute_types):
evaluations = []
max_positions = []
max_evals = []
print('Getting population individual solutions\nProgress:')
print(str(1), 'of', str(len(positions)))
ind_count_params = []
for t in range(len(fields)):
ind_count_params.append(fields[t])
ind_count_params.append(positions[0][t])
RE(bps.mv(*ind_count_params))
if len(grazing_params) > 0:
update_grazing_vectors(grazing_params, grazing_index, fields, autocompute_types)
RE(bp.count([sirepo_det, *fields]))
evaluations.append(db[-1].table()['sirepo_det_mean'].values[0])
for i in range(1, len(positions)):
chk_mean = []
print(str(i + 1), 'of', str(len(positions)))
between_linspace = np.linspace(positions[i - 1], positions[i], 4)
between = between_linspace[1:-1]
for j in range(len(between)):
between_count_params = []
for t in range(len(fields)):
between_count_params.append(fields[t])
between_count_params.append(between[j][t])
RE(bps.mv(*between_count_params))
if len(grazing_params) > 0:
update_grazing_vectors(grazing_params, grazing_index, fields, autocompute_types)
RE(bp.count([sirepo_det, *fields]))
chk_mean.append(db[-1].table()['sirepo_det_mean'].values[0])
ind_count_params.clear()
for t in range(len(fields)):
ind_count_params.append(fields[t])
ind_count_params.append(positions[i][t])
RE(bps.mv(*ind_count_params))
if len(grazing_params) > 0:
update_grazing_vectors(grazing_params, grazing_index, fields, autocompute_types)
RE(bp.count([sirepo_det, *fields]))
evaluations.append(db[-1].table()['sirepo_det_mean'].values[0])
# find index of max
ii = chk_mean.index(np.max(chk_mean))
max_positions.append(between[ii])
max_evals.append(chk_mean[ii])
for i in range(len(max_positions)):
if max_evals[i] > evaluations[i + 1]:
evaluations[i + 1] = max_evals[i]
for k in range(len(positions[i])):
positions[i + 1][k] = max_positions[i][k]
return positions, evaluations
def rand_1(pop, popsize, t_indx, mut, bounds):
# v = x_r1 + F * (x_r2 - x_r3)
idxs = [idx for idx in range(popsize) if idx != t_indx]
a, b, c = np.random.choice(idxs, 3, replace=False)
x_1 = pop[a]
x_2 = pop[b]
x_3 = pop[c]
x_diff = [x_2_i - x_3_i for x_2_i, x_3_i in zip(x_2, x_3)]
v_donor = [x_1_i + mut * x_diff_i for x_1_i, x_diff_i in zip(x_1, x_diff)]
v_donor = ensure_bounds(v_donor, bounds)
return v_donor
def best_1(pop, popsize, t_indx, mut, bounds, ind_sol):
# v = x_best + F * (x_r1 - x_r2)
x_best = pop[ind_sol.index(max(ind_sol))]
idxs = [idx for idx in range(popsize) if idx != t_indx]
a, b = np.random.choice(idxs, 2, replace=False)
x_1 = pop[a]
x_2 = pop[b]
x_diff = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)]
v_donor = [x_b + mut * x_diff_i for x_b, x_diff_i in zip(x_best, x_diff)]
v_donor = ensure_bounds(v_donor, bounds)
return v_donor
def current_to_best_1(pop, popsize, t_indx, mut, bounds, ind_sol):
# v = x_curr + F * (x_best - x_curr) + F * (x_r1 - r_r2)
x_best = pop[ind_sol.index(max(ind_sol))]
idxs = [idx for idx in range(popsize) if idx != t_indx]
a, b = np.random.choice(idxs, 2, replace=False)
x_1 = pop[a]
x_2 = pop[b]
x_curr = pop[t_indx]
x_diff1 = [x_b - x_c for x_b, x_c in zip(x_best, x_curr)]
x_diff2 = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)]
v_donor = [x_c + mut * x_diff_1 + mut * x_diff_2 for x_c, x_diff_1, x_diff_2
in zip(x_curr, x_diff1, x_diff2)]
v_donor = ensure_bounds(v_donor, bounds)
return v_donor
def best_2(pop, popsize, t_indx, mut, bounds, ind_sol): # ***
# v = x_best + F * (x_r1 - x_r2) + F * (x_r3 - r_r4)
x_best = pop[ind_sol.index(max(ind_sol))]
idxs = [idx for idx in range(popsize) if idx != t_indx]
a, b, c, d = np.random.choice(idxs, 4, replace=False)
x_1 = pop[a]
x_2 = pop[b]
x_3 = pop[c]
x_4 = pop[d]
x_diff1 = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)]
x_diff2 = [x_3_i - x_4_i for x_3_i, x_4_i in zip(x_3, x_4)]
v_donor = [x_b + mut * x_diff_1 + mut * x_diff_2 for x_b, x_diff_1, x_diff_2
in zip(x_best, x_diff1, x_diff2)]
v_donor = ensure_bounds(v_donor, bounds)
return v_donor
def rand_2(pop, popsize, t_indx, mut, bounds):
# v = x_r1 + F * (x_r2 - x_r3) + F * (x_r4 - r_r5)
idxs = [idx for idx in range(popsize) if idx != t_indx]
a, b, c, d, e = np.random.choice(idxs, 5, replace=False)
x_1 = pop[a]
x_2 = pop[b]
x_3 = pop[c]
x_4 = pop[d]
x_5 = pop[e]
x_diff1 = [x_2_i - x_3_i for x_2_i, x_3_i in zip(x_2, x_3)]
x_diff2 = [x_4_i - x_5_i for x_4_i, x_5_i in zip(x_4, x_5)]
v_donor = [x_1_i + mut * x_diff_1 + mut * x_diff_2 for x_1_i, x_diff_1, x_diff_2
in zip(x_1, x_diff1, x_diff2)]
v_donor = ensure_bounds(v_donor, bounds)
return v_donor
def update_grazing_vectors(grazing_params, grazing_index, fields, autocompute_types):
for i in range(len(grazing_index)):
grazing_angle = fields[grazing_index[i]].get()[0]
nvx = nvy = np.sqrt(1 - np.sin(grazing_angle / 1000) ** 2)
tvx = tvy = np.sqrt(1 - np.cos(grazing_angle / 1000) ** 2)
nvz = -tvx
if autocompute_types[i] == 'horizontal':
nvy = tvy = 0
elif autocompute_types[i] == 'vertical':
nvx = tvx = 0
for j in range(len(grazing_params)):
if 'normalVectorX' in grazing_params[5 * i + j].name:
grazing_params[5 * i + j].set(nvx)
elif 'normalVectorY' in grazing_params[5 * i + j].name:
grazing_params[5 * i + j].set(nvy)
elif 'tangentialVectorX' in grazing_params[5 * i + j].name:
grazing_params[5 * i + j].set(tvx)
elif 'tangentialVectorY' in grazing_params[5 * i + j].name:
grazing_params[5 * i + j].set(tvy)
elif 'normalVectorZ' in grazing_params[5 * i + j].name:
grazing_params[5 * i + j].set(nvz)
def mutate(population, strategy, mut, bounds, ind_sol):
mutated_indv = []
for i in range(len(population)):
if strategy == 'rand/1':
v_donor = rand_1(population, len(population), i, mut, bounds)
elif strategy == 'best/1':
v_donor = best_1(population, len(population), i, mut, bounds, ind_sol)
elif strategy == 'current-to-best/1':
v_donor = current_to_best_1(population, len(population), i, mut, bounds, ind_sol)
elif strategy == 'best/2':
v_donor = best_2(population, len(population), i, mut, bounds, ind_sol)
elif strategy == 'rand/2':
v_donor = rand_2(population, len(population), i, mut, bounds)
mutated_indv.append(v_donor)
return mutated_indv
def crossover(population, mutated_indv, crosspb):
crossover_indv = []
for i in range(len(population)):
v_trial = []
x_t = population[i]
for j in range(len(x_t)):
crossover_val = random()
if crossover_val <= crosspb:
v_trial.append(mutated_indv[i][j])
else:
v_trial.append(x_t[j])
crossover_indv.append(v_trial)
return crossover_indv
def select(population, crossover_indv, ind_sol, fields, grazing_params, grazing_index, autocompute_types):
positions = [elm for elm in crossover_indv]
positions.insert(0, population[0])
positions, evals = omea(positions, fields, grazing_params, grazing_index, autocompute_types)
positions = positions[1:]
evals = evals[1:]
for i in range(len(evals)):
if evals[i] < ind_sol[i]:
population[i] = positions[i]
ind_sol[i] = evals[i]
population.reverse()
ind_sol.reverse()
return population, ind_sol
def diff_ev(bounds, fields, popsize=5, crosspb=0.8, mut=0.05, threshold=1.9, mut_type='rand/1'):
# Initial population
population = []
init_indv = []
grazing_params = []
grazing_index = []
autocompute_types = []
best_fitness = [0]
count_params = []
for i in range(len(fields)):
init_indv.append(fields[i].get()[0])
if 'grazingAngle' in fields[i].name and ('Toroid' in fields[i].name or 'Circular Cylinder' in
fields[i].name or 'Elliptical Cylinder' in fields[i].name):
grazing_index.append(i)
if 'Toroid' in fields[i].name:
optic_name = 'Toroid'
elif 'Circular' in fields[i].name:
optic_name = 'Circular Cylinder'
else:
optic_name = 'Elliptical Cylinder'
sirepo_det.select_optic(optic_name)
autocompute_types.append(sirepo_det.create_parameter('autocomputeVectors'))
grazing_params.append(sirepo_det.create_parameter('normalVectorX'))
grazing_params.append(sirepo_det.create_parameter('tangentialVectorX'))
grazing_params.append(sirepo_det.create_parameter('normalVectorY'))
grazing_params.append(sirepo_det.create_parameter('tangentialVectorY'))
grazing_params.append(sirepo_det.create_parameter('normalVectorZ'))
population.append(init_indv)
for i in range(popsize - 1):
indv = []
for j in range(len(bounds)):
indv.append(uniform(bounds[j][0], bounds[j][1]))
population.append(indv)
init_pop = population[:]
# Evaluate fitness/OMEA
init_pop.sort()
pop, ind_sol = omea(init_pop, fields, grazing_params, grazing_index, autocompute_types)
pop.reverse()
ind_sol.reverse()
# Termination conditions
v = 0 # generation number
consec_best_ctr = 0 # counting successive generations with no change to best value
old_best_fit_val = 0
while not (consec_best_ctr >= 5 and old_best_fit_val >= threshold):
print('\nGENERATION ' + str(v + 1))
print('Working on mutation, crossover, and selection')
best_gen_sol = [] # hold best scores of each generation
mutated_trial_pop = mutate(pop, mut_type, mut, bounds, ind_sol)
cross_trial_pop = crossover(pop, mutated_trial_pop, crosspb)
pop, ind_sol = select(pop, cross_trial_pop, ind_sol, fields, grazing_params, grazing_index,
autocompute_types)
gen_best = np.max(ind_sol)
best_indv = pop[ind_sol.index(gen_best)]
best_gen_sol.append(best_indv)
best_fitness.append(gen_best)
print(' > BEST FITNESS:', gen_best)
print(' > BEST POSITIONS:', best_indv)
v += 1
if np.round(gen_best, 3) == np.round(old_best_fit_val, 3):
consec_best_ctr += 1
print('Counter:', consec_best_ctr)
else:
consec_best_ctr = 0
old_best_fit_val = gen_best
if consec_best_ctr >= 5 and old_best_fit_val >= threshold:
print('Finished')
break
else: # check me later
# introduce a random individual for variation
new_pos = ['', '']
curr_pos = []
for k in range(len(fields)):
curr_pos.append(pop[0][k])
new_pos[0] = curr_pos
change_index = ind_sol.index(min(ind_sol))
changed_indv = pop[change_index]
for k in range(len(changed_indv)):
changed_indv[k] = uniform(bounds[k][0], bounds[k][1])
new_pos[1] = changed_indv
new_pos, randomized_sol = omea(new_pos, fields, grazing_params, grazing_index, autocompute_types)
new_pos = new_pos[1:]
randomized_sol = randomized_sol[1:]
if randomized_sol[0] > ind_sol[change_index]:
ind_sol[change_index] = randomized_sol[0]
pop[change_index] = new_pos[0]
print()
# count_params.clear()
# for t in range(len(fields)):
# count_params.append(fields[t])
# count_params.append(changed_indv[t])
# RE(bps.mv(*count_params))
# if len(grazing_params) > 0:
# update_grazing_vectors(grazing_params, grazing_index, fields, autocompute_types)
# RE(bp.count([sirepo_det, *fields]))
# ind_sol[change_index] = db[-1].table()['sirepo_det_mean'].values[0]
x_best = best_gen_sol[-1]
print('\nThe best individual is', x_best, 'with a fitness of', gen_best)
print('It took', v, 'generations')
# plot best fitness
plot_index = np.arange(len(best_fitness))
plt.figure()
plt.plot(plot_index, best_fitness)
sim_id = '3eP3NeVp'
sb = SirepoBluesky('http://10.10.10.10:8000')
sb.auth('srw', sim_id)
sirepo_det = sd.SirepoDetector(sim_id=sim_id, reg=db.reg)
field_list = []
sirepo_det.select_optic('Toroid')
field_list.append(sirepo_det.create_parameter('tangentialRadius'))
field_list.append(sirepo_det.create_parameter('grazingAngle'))
sirepo_det.read_attrs = ['image', 'mean', 'photon_energy']
sirepo_det.configuration_attrs = ['horizontal_extent',
'vertical_extent',
'shape']
def main():
diff_ev(bounds=[(1000, 10000), (5, 10)], fields=field_list, popsize=5,
crosspb=0.8, mut=0.1, threshold=0, mut_type='rand/1')
if __name__ == '__main__':
main()