-
Notifications
You must be signed in to change notification settings - Fork 3
/
SteeringAngleUtils.py
258 lines (207 loc) · 9.52 KB
/
SteeringAngleUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import cv2
import numpy as np
import logging
import math
import datetime
import sys
_SHOW_IMAGE = False
class HandCodedLaneFollower(object):
def __init__(self, car=None):
logging.info('Creating a HandCodedLaneFollower...')
self.car = car
self.curr_steering_angle = 90
def follow_lane(self, frame):
# Main entry point of the lane follower
show_image("orig", frame)
lane_lines, frame = detect_lane(frame)
final_frame = self.steer(frame, lane_lines)
return final_frame
def steer(self, frame, lane_lines):
logging.debug('steering...')
if len(lane_lines) == 0:
logging.error('No lane lines detected, nothing to do.')
return frame
new_steering_angle = compute_steering_angle(frame, lane_lines)
self.curr_steering_angle = stabilize_steering_angle(self.curr_steering_angle, new_steering_angle, len(lane_lines))
if self.car is not None:
self.car.front_wheels.turn(self.curr_steering_angle)
curr_heading_image = display_heading_line(frame, self.curr_steering_angle)
show_image("heading", curr_heading_image)
return curr_heading_image
############################
# Frame processing steps
############################
def detect_lane(frame):
logging.debug('detecting lane lines...')
edges = detect_edges(frame)
show_image('edges', edges)
cropped_edges = region_of_interest(edges)
show_image('edges cropped', cropped_edges)
line_segments = detect_line_segments(cropped_edges)
line_segment_image = display_lines(frame, line_segments)
show_image("line segments", line_segment_image)
lane_lines = average_slope_intercept(frame, line_segments)
lane_lines_image = display_lines(frame, lane_lines)
show_image("lane lines", lane_lines_image)
return lane_lines, lane_lines_image
def detect_edges(frame):
# detect edges
edges = cv2.Canny(frame, 200, 400)
return edges
def region_of_interest(canny):
height, width = canny.shape
frame = np.zeros_like(canny)
# only focus bottom half of the screen
polygon = np.array([[
(0, height * 1 / 2),
(width, height * 1 / 2),
(width, height),
(0, height),
]], np.int32)
cv2.fillPoly(frame, polygon, 255)
show_image("frame", frame)
masked_image = cv2.bitwise_and(canny, frame)
return masked_image
def detect_line_segments(cropped_edges):
# tuning min_threshold, minLineLength, maxLineGap is a trial and error process by hand
rho = 1 # precision in pixel, i.e. 1 pixel
angle = np.pi / 180 # degree in radian, i.e. 1 degree
min_threshold = 10 # minimal of votes
line_segments = cv2.HoughLinesP(cropped_edges, rho, angle, min_threshold, np.array([]), minLineLength=8,
maxLineGap=4)
if line_segments is not None:
for line_segment in line_segments:
logging.debug('detected line_segment:')
logging.debug("%s of length %s" % (line_segment, length_of_line_segment(line_segment[0])))
return line_segments
def average_slope_intercept(frame, line_segments):
"""
This function combines line segments into one or two lane lines
If all line slopes are < 0: then we only have detected left lane
If all line slopes are > 0: then we only have detected right lane
"""
lane_lines = []
if line_segments is None:
logging.info('No line_segment segments detected')
return lane_lines
height, width, _ = frame.shape
left_fit = []
right_fit = []
boundary = 1/3
left_region_boundary = width * (1 - boundary) # left lane line segment should be on left 2/3 of the screen
right_region_boundary = width * boundary # right lane line segment should be on left 2/3 of the screen
for line_segment in line_segments:
for x1, y1, x2, y2 in line_segment:
if x1 == x2:
logging.info('skipping vertical line segment (slope=inf): %s' % line_segment)
continue
fit = np.polyfit((x1, x2), (y1, y2), 1)
slope = fit[0]
intercept = fit[1]
if slope < 0:
if x1 < left_region_boundary and x2 < left_region_boundary:
left_fit.append((slope, intercept))
else:
if x1 > right_region_boundary and x2 > right_region_boundary:
right_fit.append((slope, intercept))
left_fit_average = np.average(left_fit, axis=0)
if len(left_fit) > 0:
lane_lines.append(make_points(frame, left_fit_average))
right_fit_average = np.average(right_fit, axis=0)
if len(right_fit) > 0:
lane_lines.append(make_points(frame, right_fit_average))
logging.debug('lane lines: %s' % lane_lines) # [[[316, 720, 484, 432]], [[1009, 720, 718, 432]]]
return lane_lines
def compute_steering_angle(frame, lane_lines):
""" Find the steering angle based on lane line coordinate
We assume that camera is calibrated to point to dead center
"""
if len(lane_lines) == 0:
logging.info('No lane lines detected, do nothing')
return -90
height, width, _ = frame.shape
if len(lane_lines) == 1:
logging.debug('Only detected one lane line, just follow it. %s' % lane_lines[0])
x1, _, x2, _ = lane_lines[0][0]
x_offset = x2 - x1
else:
_, _, left_x2, _ = lane_lines[0][0]
_, _, right_x2, _ = lane_lines[1][0]
camera_mid_offset_percent = 0.02 # 0.0 means car pointing to center, -0.03: car is centered to left, +0.03 means car pointing to right
mid = int(width / 2 * (1 + camera_mid_offset_percent))
x_offset = (left_x2 + right_x2) / 2 - mid
# find the steering angle, which is angle between navigation direction to end of center line
y_offset = int(height / 2)
angle_to_mid_radian = math.atan(x_offset / y_offset) # angle (in radian) to center vertical line
angle_to_mid_deg = int(angle_to_mid_radian * 180.0 / math.pi) # angle (in degrees) to center vertical line
steering_angle = angle_to_mid_deg + 90 # this is the steering angle needed by picar front wheel
logging.debug('new steering angle: %s' % steering_angle)
return steering_angle
def stabilize_steering_angle(curr_steering_angle, new_steering_angle, num_of_lane_lines, max_angle_deviation_two_lines=5, max_angle_deviation_one_lane=1):
if num_of_lane_lines == 2 :
# if both lane lines detected, then we can deviate more
max_angle_deviation = max_angle_deviation_two_lines
else :
# if only one lane detected, don't deviate too much
max_angle_deviation = max_angle_deviation_one_lane
angle_deviation = new_steering_angle - curr_steering_angle
if abs(angle_deviation) > max_angle_deviation:
stabilized_steering_angle = int(curr_steering_angle
+ max_angle_deviation * angle_deviation / abs(angle_deviation))
else:
stabilized_steering_angle = new_steering_angle
logging.info('Proposed angle: %s, stabilized angle: %s' % (new_steering_angle, stabilized_steering_angle))
return stabilized_steering_angle
############################
# Utility Functions
############################
def display_lines(frame, lines, line_color=(0, 255, 0), line_width=10):
line_image = np.zeros_like(frame)
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(line_image, (x1, y1), (x2, y2), line_color, line_width)
line_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1)
return line_image
def display_heading_line(frame, steering_angle, line_color=(0, 0, 255), line_width=5, ):
heading_image = np.zeros_like(frame)
height, width, _ = frame.shape
# figure out the heading line from steering angle
# heading line (x1,y1) is always center bottom of the screen
# (x2, y2) requires a bit of trigonometry
# Note: the steering angle of:
# 0-89 degree: turn left
# 90 degree: going straight
# 91-180 degree: turn right
steering_angle_radian = steering_angle / 180.0 * math.pi
x1 = int(width / 2)
y1 = height
x2 = int(x1 - height / 2 / math.tan(steering_angle_radian))
y2 = int(height / 2)
print("Steering Angle: "+ str(steering_angle))
cv2.line(heading_image, (x1, y1), (x2, y2), line_color, line_width)
heading_image = cv2.addWeighted(frame, 0.8, heading_image, 1, 1)
return heading_image
def length_of_line_segment(line):
x1, y1, x2, y2 = line
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
def show_image(title, frame, show=_SHOW_IMAGE):
if show:
cv2.imshow(title, frame)
def make_points(frame, line):
height, width, _ = frame.shape
slope, intercept = line
y1 = height # bottom of the frame
y2 = int(y1 * 1 / 2) # make points from middle of the frame down
# bound the coordinates within the frame
x1 = max(-width, min(2 * width, int((y1 - intercept) / slope)))
x2 = max(-width, min(2 * width, int((y2 - intercept) / slope)))
return [[x1, y1, x2, y2]]
############################
# Test Functions
############################
def test_photo(test_image):
land_follower = HandCodedLaneFollower()
#frame = cv2.imread(test_image)
combo_image = land_follower.follow_lane(test_image)
show_image('final', combo_image, True)