forked from Verified-Intelligence/auto_LiRPA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnext.py
108 lines (89 loc) · 3.92 KB
/
resnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
'''ResNeXt in PyTorch.
See the paper "Aggregated Residual Transformations for Deep Neural Networks" for more details.
https://github.com/kuangliu/pytorch-cifar
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class Block(nn.Module):
'''Grouped convolution block.'''
expansion = 2
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
super(Block, self).__init__()
group_width = cardinality * bottleneck_width
self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=True)
self.bn1 = nn.BatchNorm2d(group_width)
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=True)
# self.bn2 = nn.BatchNorm2d(group_width)
self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=True)
# self.bn3 = nn.BatchNorm2d(self.expansion*group_width)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*group_width:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=True),
# nn.BatchNorm2d(self.expansion*group_width)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
# out = F.relu(self.bn2(self.conv2(out)))
# out = self.bn3(self.conv3(out))
# out = F.relu(self.conv1(x))
out = F.relu(self.conv2(out))
out = self.conv3(out)
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNeXt(nn.Module):
def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=10):
super(ResNeXt, self).__init__()
self.cardinality = cardinality
self.bottleneck_width = bottleneck_width
self.in_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, bias=True, padding=1)
# self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(num_blocks[0], 1)
self.layer2 = self._make_layer(num_blocks[1], 2)
self.layer3 = self._make_layer(num_blocks[2], 2)
# self.layer4 = self._make_layer(num_blocks[3], 2)
self.linear1 = nn.Linear(cardinality*bottleneck_width*512, 512)
self.linear2 = nn.Linear(512, num_classes)
def _make_layer(self, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(Block(self.in_planes, self.cardinality, self.bottleneck_width, stride))
self.in_planes = Block.expansion * self.cardinality * self.bottleneck_width
# Increase bottleneck_width by 2 after each stage.
self.bottleneck_width *= 2
return nn.Sequential(*layers)
def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.conv1(x))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
# out = self.layer4(out)
# out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = F.relu(self.linear1(out))
out = self.linear2(out)
return out
def ResNeXt29_2x64d():
return ResNeXt(num_blocks=[3,3,3], cardinality=2, bottleneck_width=64)
def ResNeXt29_4x64d():
return ResNeXt(num_blocks=[3,3,3], cardinality=4, bottleneck_width=64)
def ResNeXt29_8x64d():
return ResNeXt(num_blocks=[3,3,3], cardinality=8, bottleneck_width=64)
def ResNeXt29_32x4d():
return ResNeXt(num_blocks=[3,3,3], cardinality=32, bottleneck_width=4)
def ResNeXt_cifar():
return ResNeXt(num_blocks=[1,1,1], cardinality=2, bottleneck_width=32)
if __name__ == "__main__":
from thop import profile
net = ResNeXt_cifar()
x = torch.randn(1,3,32,32)
y = net(x)
print(net)
macs, params = profile(net, (torch.randn(1, 3, 32, 32),))
print(macs / 1000000, params / 1000000) # 6830M, 7M
print(y)