Skip to content

mnikitin/Shift-Invariant-CNNs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Shift-Invariant-CNNs

Gluon implementation of anti-aliased CNNs: https://arxiv.org/abs/1904.11486
Based on original PyTorch implementation: https://github.com/adobe/antialiased-cnns

CIFAR-10 experiments

Usage

Example of training resnet20_v1 with anti-aliasing and random crop augmentation:

python3 train_cifar10.py --mode hybrid --num-gpus 1 -j 8 --batch-size 128 --num-epochs 186 --lr 0.003 --lr-decay 0.1 --lr-decay-epoch 81,122 --wd 0.0001 --optimizer adam --model cifar_resnet20_v1 --antialiasing --random-crop

Results

Model random crop anti-aliasing Train accuracy Test accuracy
cifar_resnet20_v1 1.0000 0.8879
1.0000 0.9026
0.9918 0.9165
0.9960 0.9184
cifar_resnet20_v2 1.0000 0.8850
0.9999 0.9051
0.9891 0.9114
0.9953 0.9084

Releases

No releases published

Packages

No packages published

Languages